
1

1 LPeg

1. Home

1. Introduction

2. Functions

3. Basic Constructions

4. Grammars

5. Captures

6. Some Examples

7. The re Module

8. Download

9. License

1.1 Introduction

LPeg is a new pattern-matching library for Lua, based on Parsing Expression Gram-
mars (PEGs). This text is a reference manual for the library. For a more for-
mal treatment of LPeg, as well as some discussion about its implementation, see
 A Text Pattern-Matching Tool based on Parsing Expression Grammars. (You
may also be interested in my talk about LPeg given at the III Lua Workshop.)
Following the Snobol tradition, LPeg defines patterns as first-class objects. That
is, patterns are regular Lua values (represented by userdata). The library offers
several functions to create and compose patterns. With the use of metamethods,
several of these functions are provided as infix or prefix operators. On the one
hand, the result is usually much more verbose than the typical encoding of patterns
using the so called regular expressions (which typically are not regular expressions
in the formal sense). On the other hand, first-class patterns allow much better
documentation (as it is easy to comment the code, to use auxiliary variables to
break complex definitions, etc.) and are extensible, as we can define new functions
to create and compose patterns.
For a quick glance of the library, the following table summarizes its basic operations
for creating patterns:

http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#intro
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#func
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#basic
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#grammar
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#captures
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#ex
http://www.inf.puc-rio.br/~roberto/lpeg/re.html
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#download
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#license
http://pdos.csail.mit.edu/~baford/packrat/
http://pdos.csail.mit.edu/~baford/packrat/
http://www.inf.puc-rio.br/~roberto/docs/peg.pdf
http://vimeo.com/1485123

2

Operator Description
lpeg.P(string) Matches string literally
lpeg.P(number) Matches exactly number characters
lpeg.S(string) Matches any character in string (Set)
lpeg.R("xy") Matches any character between x and y (Range)
patt^n Matches at least n repetitions of patt
patt^-n Matches at most n repetitions of patt
patt1 * patt2 Matches patt1 followed by patt2
patt1 + patt2 Matches patt1 or patt2 (ordered choice)
patt1 - patt2 Matches patt1 if patt2 does not match
-patt Equivalent to ("" - patt)
#patt Matches patt but consumes no input
As a very simple example, lpeg.R("09")^1 creates a pattern that matches a non-empty
sequence of digits. As a not so simple example, -lpeg.P(1) (which can be written
as lpeg.P(-1) or simply -1 for operations expecting a pattern) matches an empty
string only if it cannot match a single character; so, it succeeds only at the subject's
end.
LPeg also offers the re module, which implements patterns following a regular-ex-
pression style (e.g., [09]+). (This module is 200 lines of Lua code, and of course
uses LPeg to parse regular expressions.)

1.2 Functions

1.2.1 lpeg.match (pattern, subject [, init])

The matching function. It attempts to match the given pattern against the subject
string. If the match succeeds, returns the index in the subject of the first character
after the match, or the values of captured values (if the pattern captured any
value).
An optional numeric argument init makes the match starts at that position in the
subject string. As usual in Lua libraries, a negative value counts from the end.
Unlike typical pattern-matching functions, match works only in anchored mode;
that is, it tries to match the pattern with a prefix of the given subject string (at
position init), not with an arbitrary substring of the subject. So, if we want to
find a pattern anywhere in a string, we must either write a loop in Lua or write a

http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-p
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-p
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-s
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-pow
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-pow
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-mul
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-add
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-sub
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-unm
http://www.inf.puc-rio.br/~roberto/lpeg/re.html
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#captures

3

pattern that matches anywhere. This second approach is easy and quite efficient;
see examples.

1.2.2 lpeg.type (value)

If the given value is a pattern, returns the string "pattern". Otherwise returns nil.

1.2.3 lpeg.version ()

Returns a string with the running version of LPeg.

1.3 Basic Constructions

The following operations build patterns. All operations that expect a pattern as an
argument may receive also strings, tables, numbers, booleans, or functions, which
are translated to patterns according to the rules of function lpeg.P.

1.3.1 lpeg.P (value)

Converts the given value into a proper pattern, according to the following rules:

1. If the argument is a pattern, it is returned unmodified.

2. If the argument is a string, it is translated to a pattern that matches literally
the string.

3. If the argument is a non-negative number n, the result is a pattern that matches
exactly n characters.

4. If the argument is a negative number -n, the result is a pattern that succeeds only
if the input string does not have n characters: It is equivalent to the unary mi-
nus operation applied over the pattern corresponding to the (non-negative)
value n.

5. If the argument is a boolean, the result is a pattern that always succeeds or
always fails (according to the boolean value), without consuming any input.

http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#ex
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-p
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-unm
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#op-unm

4

6. If the argument is a table, it is interpreted as a grammar (see Grammars).

7. If the argument is a function, returns a pattern equivalent to a match-time capture
over the empty string.

1.3.2 lpeg.R ({range})

Returns a pattern that matches any single character belonging to one of the given
ranges. Each range is a string xy of length 2, representing all characters with code
between the codes of x and y (both inclusive).
As an example, the pattern lpeg.R("09") matches any digit, and lpeg.R("az",
"AZ") matches any ASCII letter.

1.3.3 lpeg.S (string)

Returns a pattern that matches any single character that appears in the given string.
(The S stands for Set.)
As an example, the pattern lpeg.S("+-*/") matches any arithmetic operator.
Note that, if s is a character (that is, a string of length 1), then lpeg.P(s) is
equivalent to lpeg.S(s) which is equivalent to lpeg.R(s..s). Note also that both
lpeg.S("") and lpeg.R() are patterns that always fail.

1.3.4 lpeg.V (v)

This operation creates a non-terminal (a variable) for a grammar. The created
non-terminal refers to the rule indexed by v in the enclosing grammar. (See Gram-
mars for details.)

1.3.5 lpeg.locale ([table])

Returns a table with patterns for matching some character classes according to the
current locale. The table has fields named alnum, alpha, cntrl, digit, graph,
lower, print, punct, space, upper, and xdigit, each one containing a correspon-
dent pattern. Each pattern matches any single character that belongs to its class.

http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#grammar
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#matchtime
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#grammar
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#grammar

5

If called with an argument table, then it creates those fields inside the given table
and returns that table.

1.3.6 #patt

Returns a pattern that matches only if the input string matches patt, but without
consuming any input, independently of success or failure. (This pattern is equivalent
to &patt in the original PEG notation.)
When it succeeds, #patt produces all captures produced by patt.

1.3.7 -patt

Returns a pattern that matches only if the input string does not match patt. It
does not consume any input, independently of success or failure. (This pattern is
equivalent to !patt in the original PEG notation.)
As an example, the pattern -lpeg.P(1) matches only the end of string.
This pattern never produces any captures, because either patt fails or -patt fails.
(A failing pattern never produces captures.)

1.3.8 patt1 + patt2

Returns a pattern equivalent to an ordered choice of patt1 and patt2. (This is
denoted by patt1 / patt2 in the original PEG notation, not to be confused with
the / operation in LPeg.) It matches either patt1 or patt2, with no backtracking
once one of them succeeds. The identity element for this operation is the pattern
lpeg.P(false), which always fails.
If both patt1 and patt2 are character sets, this operation is equivalent to set union.

lower = lpeg.R("az")
upper = lpeg.R("AZ")
letter = lower + upper

1.3.9 patt1 - patt2

Returns a pattern equivalent to !patt2 patt1. This pattern asserts that the input
does not match patt2 and then matches patt1.

6

If both patt1 and patt2 are character sets, this operation is equivalent to set
difference. Note that -patt is equivalent to "" - patt (or 0 - patt). If patt is a
character set, 1 - patt is its complement.

1.3.10 patt1 * patt2

Returns a pattern that matches patt1 and then matches patt2, starting where
patt1 finished. The identity element for this operation is the pattern lpeg.P(true),
which always succeeds.
(LPeg uses the * operator [instead of the more obvious ..] both because it has the
right priority and because in formal languages it is common to use a dot for denoting
concatenation.)

1.3.11 patt^n

If n is nonnegative, this pattern is equivalent to pattn patt*. It matches at least n
occurrences of patt.
Otherwise, when n is negative, this pattern is equivalent to (patt?)−n. That is, it
matches at most -n occurrences of patt.
In particular, patt^0 is equivalent to patt*, patt^1 is equivalent to patt+, and
patt^-1 is equivalent to patt? in the original PEG notation.
In all cases, the resulting pattern is greedy with no backtracking (also called a
possessive repetition). That is, it matches only the longest possible sequence of
matches for patt.

1.4 Grammars

With the use of Lua variables, it is possible to define patterns incrementally, with
each new pattern using previously defined ones. However, this technique does not
allow the definition of recursive patterns. For recursive patterns, we need real gram-
mars.
LPeg represents grammars with tables, where each entry is a rule.
The call lpeg.V(v) creates a pattern that represents the nonterminal (or variable)
with index v in a grammar. Because the grammar still does not exist when this
function is evaluated, the result is an open reference to the respective rule.
A table is fixed when it is converted to a pattern (either by calling lpeg.P or by using
it wherein a pattern is expected). Then every open reference created by lpeg.V(v)
is corrected to refer to the rule indexed by v in the table.
When a table is fixed, the result is a pattern that matches its initial rule. The entry
with index 1 in the table defines its initial rule. If that entry is a string, it is assumed

7

to be the name of the initial rule. Otherwise, LPeg assumes that the entry 1 itself
is the initial rule.
As an example, the following grammar matches strings of a's and b's that have the
same number of a's and b's:

equalcount = lpeg.P{
"S"; -- initial rule name
S = "a" * lpeg.V"B" + "b" * lpeg.V"A" + "",
A = "a" * lpeg.V"S" + "b" * lpeg.V"A" * lpeg.V"A",
B = "b" * lpeg.V"S" + "a" * lpeg.V"B" * lpeg.V"B",

} * -1

1.5 Captures

A capture is a pattern that creates values (the so called semantic information) when
it matches. LPeg offers several kinds of captures, which produces values based on
matches and combine these values to produce new values. Each capture may produce
zero or more values.
The following table summarizes the basic captures:
Operation What it Produces
lpeg.C(patt) the match for patt
lpeg.Carg(n) the value of the nth extra argument to lpeg.match

(matches the empty string)
lpeg.Cb(name) the values produced by the previous group capture

named name (matches the empty string)
lpeg.Cc(values) the given values (matches the empty string)
lpeg.Cf(patt, func) a folding of the captures from patt
lpeg.Cg(patt, [name]) the values produced by patt, optionally tagged with

name
lpeg.Cp() the current position (matches the empty string)
lpeg.Cs(patt) the match for patt with the values from nested

captures replacing their matches
lpeg.Ct(patt) a table with all captures from patt
patt / string string, with some marks replaced by captures of

patt
patt / table table[c], where c is the (first) capture of patt

http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-c
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-arg
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-b
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-cc
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-f
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-p
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-s
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-t
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-string
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-query

8

patt / function the returns of function applied to the captures of
patt

lpeg.Cmt(patt, function) the returns of function applied to the captures of
patt; the application is done at match time

A capture pattern produces its values every time it succeeds. For instance, a capture
inside a loop produces as many values as matched by the loop. A capture produces
a value only when it succeeds. For instance, the pattern lpeg.C(lpeg.P"a"^-1)
produces the empty string when there is no "a" (because the pattern "a"? succeeds),
while the pattern lpeg.C("a")^-1 does not produce any value when there is no "a"
(because the pattern "a" fails).
Usually, LPeg evaluates all captures only after (and if) the entire match succeeds.
At match time it only gathers enough information to produce the capture values
later. As a particularly important consequence, most captures cannot affect the
way a pattern matches a subject. The only exception to this rule is the so-called
match-time capture. When a match-time capture matches, it forces the immediate
evaluation of all its nested captures and then calls its corresponding function, which
tells whether the match succeeds and also what values are produced.

1.5.1 lpeg.C (patt)

Creates a simple capture, which captures the substring of the subject that matches
patt. The captured value is a string. If patt has other captures, their values are
returned after this one.

1.5.2 lpeg.Carg (n)

Creates an argument capture. This pattern matches the empty string and produces
the value given as the nth extra argument given in the call to lpeg.match.

1.5.3 lpeg.Cb (name)

Creates a back capture. This pattern matches the empty string and produces the
values produced by the most recent group capture named name.
Most recent means the last complete outermost group capture with the given name.
A Complete capture means that the entire pattern corresponding to the capture

http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-func
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#matchtime
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#matchtime
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-g

9

has matched. An Outermost capture means that the capture is not inside another
complete capture.

1.5.4 lpeg.Cc ({value})

Creates a constant capture. This pattern matches the empty string and produces
all given values as its captured values.

1.5.5 lpeg.Cf (patt, func)

Creates an fold capture. If patt produces a list of captures C1 C2 ... Cn, this
capture will produce the value func(...func(func(C1, C2), C3)..., Cn), that is, it will
fold (or accumulate, or reduce) the captures from patt using function func.
This capture assumes that patt should produce at least one capture with at least
one value (of any type), which becomes the initial value of an accumulator. (If you
need a specific initial value, you may prefix a constant capture to patt.) For each
subsequent capture LPeg calls func with this accumulator as the first argument and
all values produced by the capture as extra arguments; the value returned by this
call becomes the new value for the accumulator. The final value of the accumulator
becomes the captured value.
As an example, the following pattern matches a list of numbers separated by commas
and returns their addition:

-- matches a numeral and captures its value
number = lpeg.R"09"^1 / tonumber

-- matches a list of numbers, captures their values
list = number * ("," * number)^0

-- auxiliary function to add two numbers
function add (acc, newvalue) return acc + newvalue end

-- folds the list of numbers adding them
sum = lpeg.Cf(list, add)

http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-cc

10

-- example of use
print(sum:match("10,30,43")) --> 83

1.5.6 lpeg.Cg (patt [, name])

Creates a group capture. It groups all values returned by patt into a single capture.
The group may be anonymous (if no name is given) or named with the given name.
An anonymous group serves to join values from several captures into a single capture.
A named group has a different behavior. In most situations, a named group returns
no values at all. Its values are only relevant for a following back capture or when
used inside a table capture.

1.5.7 lpeg.Cp ()

Creates a position capture. It matches the empty string and captures the position
in the subject where the match occurs. The captured value is a number.

1.5.8 lpeg.Cs (patt)

Creates a substitution capture, which captures the substring of the subject that
matches patt, with substitutions. For any capture inside patt with a value, the
substring that matched the capture is replaced by the capture value (which should
be a string). The final captured value is the string resulting from all replacements.

1.5.9 lpeg.Ct (patt)

Creates a table capture. This capture creates a table and puts all values from
all anonymous captures made by patt inside this table in successive integer keys,
starting at 1. Moreover, for each named capture group created by patt, the first
value of the group is put into the table with the group name as its key. The captured
value is only the table.

1.5.10 patt / string

Creates a string capture. It creates a capture string based on string. The captured
value is a copy of string, except that the character % works as an escape character:
any sequence in string of the form %n, with n between 1 and 9, stands for the

http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-b
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html#cap-t

11

match of the n-th capture in patt. The sequence %0 stands for the whole match.
The sequence %% stands for a single %.

1.5.11 patt / table

Creates a query capture. It indexes the given table using as key the first value
captured by patt, or the whole match if patt produced no value. The value at that
index is the final value of the capture. If the table does not have that key, there is
no captured value.

1.5.12 patt / function

Creates a function capture. It calls the given function passing all captures made by
patt as arguments, or the whole match if patt made no capture. The values returned
by the function are the final values of the capture. In particular, if function returns
no value, there is no captured value.

1.5.13 lpeg.Cmt(patt, function)

Creates a match-time capture. Unlike all other captures, this one is evaluated im-
mediately when a match occurs. It forces the immediate evaluation of all its nested
captures and then calls function.
The function gets as arguments the entire subject, the current position (after the
match of patt), plus any capture values produced by patt.
The first value returned by function defines how the match happens. If the call
returns a number, the match succeeds and the returned number becomes the new
current position. (Assuming a subject s and current position i, the returned number
must be in the range [i, len(s) + 1].) If the call returns false, nil, or no value, the
match fails.
Any extra values returned by the function become the values produced by the cap-
ture.

1.6 Some Examples

1.6.1 Splitting a string

The following code splits a string using a given pattern sep as a separator:

12

function split (s, sep)
sep = lpeg.P(sep)
local elem = lpeg.C((1 - sep)^0)
local p = elem * (sep * elem)^0
return lpeg.match(p, s)

end

First the function ensures that sep is a proper pattern. The pattern elem is a
repetition of zero of more arbitrary characters as long as there is not a match against
the separator. It also captures its result. The pattern p matches a list of elements
separated by sep.
If the split results in too many values, it may overflow the maximum number of
values that can be returned by a Lua function. In this case, we should collect these
values in a table:

function split (s, sep)
sep = lpeg.P(sep)
local elem = lpeg.C((1 - sep)^0)
local p = lpeg.Ct(elem * (sep * elem)^0) -- make a table capture
return lpeg.match(p, s)

end

1.6.2 Searching for a pattern

The primitive match works only in anchored mode. If we want to find a pattern
anywhere in a string, we must write a pattern that matches anywhere.
Because patterns are composable, we can write a function that, given any arbitrary
pattern p, returns a new pattern that searches for p anywhere in a string. There are
several ways to do the search. One way is like this:

function anywhere (p)
return lpeg.P{ p + 1 * lpeg.V(1) }

end

This grammar has a straight reading: it matches p or skips one character and tries
again.
If we want to know where the pattern is in the string (instead of knowing only that
it is there somewhere), we can add position captures to the pattern:

local I = lpeg.Cp()
function anywhere (p)

13

return lpeg.P{ I * p * I + 1 * lpeg.V(1) }
end

Another option for the search is like this:

local I = lpeg.Cp()
function anywhere (p)
return (1 - lpeg.P(p))^0 * I * p * I

end

Again the pattern has a straight reading: it skips as many characters as possible
while not matching p, and then matches p (plus appropriate captures).
If we want to look for a pattern only at word boundaries, we can use the following
transformer:

local t = lpeg.locale()

function atwordboundary (p)
return lpeg.P{
[1] = p + t.alpha^0 * (1 - t.alpha)^1 * lpeg.V(1)

}
end

1.6.3 Balanced parentheses

The following pattern matches only strings with balanced parentheses:

b = lpeg.P{ "(" * ((1 - lpeg.S"()") + lpeg.V(1))^0 * ")" }

Reading the first (and only) rule of the given grammar, we have that a balanced
string is an open parenthesis, followed by zero or more repetitions of either a
non-parenthesis character or a balanced string (lpeg.V(1)), followed by a closing
parenthesis.

1.6.4 Global substitution

The next example does a job somewhat similar to string.gsub. It receives a pattern
and a replacement value, and substitutes the replacement value for all occurrences
of the pattern in a given string:

14

function gsub (s, patt, repl)
patt = lpeg.P(patt)
patt = lpeg.Cs((patt / repl + 1)^0)
return lpeg.match(patt, s)

end

As in string.gsub, the replacement value can be a string, a function, or a table.

1.6.5 Name-value lists

This example parses a list of name-value pairs and returns a table with those pairs:

lpeg.locale(lpeg)

local space = lpeg.space^0
local name = lpeg.C(lpeg.alpha^1) * space
local sep = lpeg.S(",;") * space
local pair = lpeg.Cg(name * "=" * space * name) * sep^-1
local list = lpeg.Cf(lpeg.Ct("") * pair^0, rawset)
t = list:match("a=b, c = hi; next = pi") --> { a = "b", c = "hi", next
= "pi" }

Each pair has the format name = name followed by an optional separator (a comma
or a semicolon). The pair pattern encloses the pair in a group pattern, so that the
names become the values of a single capture. The list pattern then folds these
captures. It starts with an empty table, created by a table capture matching an
empty string; then for each capture (a pair of names) it applies rawset over the
accumulator (the table) and the capture values (the pair of names). rawset returns
the table itself, so the accumulator is always the table.

1.6.6 Comma-Separated Values (CSV)

This example breaks a string into comma-separated values, returning all fields:

local field = '"' * lpeg.Cs(((lpeg.P(1) - '"') + lpeg.P'""' / '"')^0) *
'"' +

lpeg.C((1 - lpeg.S',\n"')^0)

local record = field * (',' * field)^0 * (lpeg.P'\n' + -1)

function csv (s)

15

return lpeg.match(record, s)
end

A field is either a quoted field (which may contain any character except an individual
quote, which may be written as two quotes that are replaced by one) or an unquoted
field (which cannot contain commas, newlines, or quotes). A record is a list of fields
separated by commas, ending with a newline or the string end (-1).

1.6.7 UTF-8 and Latin 1
It is not difficult to use LPeg to convert a string from UTF-8 encoding to Latin 1
(ISO 8859-1):

-- convert a two-byte UTF-8 sequence to a Latin 1 character
local function f2 (s)
local c1, c2 = string.byte(s, 1, 2)
return string.char(c1 * 64 + c2 - 12416)

end

local utf8 = lpeg.R("\0\127")
+ lpeg.R("\194\195") * lpeg.R("\128\191") / f2

local decode_pattern = lpeg.Cs(utf8^0) * -1

In this code, the definition of UTF-8 is already restricted to the Latin 1 range (from
0 to 255). Any encoding outside this range (as well as any invalid encoding) will
not match that pattern.
As the definition of decode_pattern demands that the pattern matches the whole
input (because of the -1 at its end), any invalid string will simply fail to match,
without any useful information about the problem. We can improve this situation
redefining decode_pattern as follows:

local function er (_, i) error("invalid encoding at position " .. i) end

local decode_pattern = lpeg.Cs(utf8^0) * (-1 + lpeg.P(er))

Now, if the pattern utf8^0 stops before the end of the string, an appropriate error
function is called.

1.6.8 UTF-8 and Unicode
We can extend the previous patterns to handle all Unicode code points. Of course,
we cannot translate them to Latin 1 or any other one-byte encoding. Instead, our

16

translation results in a array with the code points represented as numbers. The full
code is here:

-- decode a two-byte UTF-8 sequence
local function f2 (s)
local c1, c2 = string.byte(s, 1, 2)
return c1 * 64 + c2 - 12416

end

-- decode a three-byte UTF-8 sequence
local function f3 (s)
local c1, c2, c3 = string.byte(s, 1, 3)
return (c1 * 64 + c2) * 64 + c3 - 925824

end

-- decode a four-byte UTF-8 sequence
local function f4 (s)
local c1, c2, c3, c4 = string.byte(s, 1, 4)
return ((c1 * 64 + c2) * 64 + c3) * 64 + c4 - 63447168

end

local cont = lpeg.R("\128\191") -- continuation byte

local utf8 = lpeg.R("\0\127") / string.byte
+ lpeg.R("\194\223") * cont / f2
+ lpeg.R("\224\239") * cont * cont / f3
+ lpeg.R("\240\244") * cont * cont * cont / f4

local decode_pattern = lpeg.Ct(utf8^0) * -1

1.6.9 Lua's long strings

A long string in Lua starts with the pattern [=*[and ends at the first occurrence
of]=*] with exactly the same number of equal signs. If the opening brackets are
followed by a newline, this newline is discharged (that is, it is not part of the string).
To match a long string in Lua, the pattern must capture the first repetition of equal
signs and then, whenever it finds a candidate for closing the string, check whether
it has the same number of equal signs.

open = "[" * lpeg.Cg(lpeg.P"="^0, "init") * "[" * lpeg.P"\n"^-1
close = "]" * lpeg.C(lpeg.P"="^0) * "]"

17

closeeq = lpeg.Cmt(close * lpeg.Cb("init"), function (s, i, a, b) return
a == b end)
string = open * m.C((lpeg.P(1) - closeeq)^0) * close /
function (o, s) return s end

The open pattern matches [=*[, capturing the repetitions of equal signs in a group
named init; it also discharges an optional newline, if present. The close pattern
matches]=*]. The closeeq pattern first matches close; then it uses a back capture
to recover the capture made by the previous open, which is named init; finally it
uses a match-time capture to check whether both captures are equal. The string
pattern starts with an open, then it goes as far as possible until matching closeeq,
and then matches the final close. The final function capture simply consumes the
captures made by open and close and returns only the middle capture, which is
the string contents.

1.6.10 Arithmetic expressions

This example is a complete parser and evaluator for simple arithmetic expressions.
We write it in two styles. The first approach first builds a syntax tree and then
traverses this tree to compute the expression value:

-- Lexical Elements
local Space = lpeg.S(" \n\t")^0
local Number = lpeg.C(lpeg.P"-"^-1 * lpeg.R("09")^1) * Space
local FactorOp = lpeg.C(lpeg.S("+-")) * Space
local TermOp = lpeg.C(lpeg.S("*/")) * Space
local Open = "(" * Space
local Close = ")" * Space

-- Grammar
local Exp, Term, Factor = lpeg.V"Exp", lpeg.V"Term", lpeg.V"Factor"
G = lpeg.P{ Exp,
Exp = lpeg.Ct(Factor * (FactorOp * Factor)^0);
Factor = lpeg.Ct(Term * (TermOp * Term)^0);
Term = Number + Open * Exp * Close;

}

G = Space * G * -1

-- Evaluator
function eval (x)

18

if type(x) == "string" then
return tonumber(x)

else
local op1 = eval(x[1])
for i = 2, #x, 2 do
local op = x[i]
local op2 = eval(x[i + 1])
if (op == "+") then op1 = op1 + op2
elseif (op == "-") then op1 = op1 - op2
elseif (op == "*") then op1 = op1 * op2
elseif (op == "/") then op1 = op1 / op2
end

end
return op1

end
end

-- Parser/Evaluator
function evalExp (s)
local t = lpeg.match(G, s)
if not t then error("syntax error", 2) end
return eval(t)

end

-- small example
print(evalExp"3 + 5*9 / (1+1) - 12") --> 13.5

The second style computes the expression value on the fly, without building the
syntax tree. The following grammar takes this approach. (It assumes the same
lexical elements as before.)

-- Auxiliary function
function eval (v1, op, v2)
if (op == "+") then return v1 + v2
elseif (op == "-") then return v1 - v2
elseif (op == "*") then return v1 * v2
elseif (op == "/") then return v1 / v2
end

end

-- Grammar

19

local V = lpeg.V
G = lpeg.P{ "Exp",
Exp = lpeg.Cf(V"Factor" * lpeg.Cg(FactorOp * V"Factor")^0, eval);
Factor = lpeg.Cf(V"Term" * lpeg.Cg(TermOp * V"Term")^0, eval);
Term = Number / tonumber + Open * V"Exp" * Close;

}

-- small example
print(lpeg.match(G, "3 + 5*9 / (1+1) - 12")) --> 13.5

Note the use of the fold (accumulator) capture. To compute the value of an expres-
sion, the accumulator starts with the value of the first factor, and then applies eval
over the accumulator, the operator, and the new factor for each repetition.

1.7 Download

LPeg source code.

1.8 License

Copyright ©2008 Lua.org, PUC-Rio.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
$Id: lpeg.html,v 1.54 2008/10/10 19:07:32 roberto Exp $

http://www.inf.puc-rio.br/~roberto/lpeg/lpeg-0.9.tar.gz

