
1

1 3.7 - Functions and Types

Here we list all functions and types from the C API in alphabetical order. Each
function has an indicator like this: [-o, +p, x]
The first field, o, is how many elements the function pops from the stack. The second
field, p, is how many elements the function pushes onto the stack. (Any function
always pushes its results after popping its arguments.) A field in the form x|y
means the function can push (or pop) x or y elements, depending on the situation;
an interrogation mark '?' means that we cannot know how many elements the
function pops/pushes by looking only at its arguments (e.g., they may depend on
what is on the stack). The third field, x, tells whether the function may throw
errors: '-' means the function never throws any error; 'm' means the function may
throw an error only due to not enough memory; 'e' means the function may throw
other kinds of errors; 'v' means the function may throw an error on purpose.

1.1 lua_Alloc

typedef void * (*lua_Alloc) (void *ud,
void *ptr,
size_t osize,
size_t nsize);

The type of the memory-allocation function used by Lua states. The allocator
function must provide a functionality similar to realloc, but not exactly the same.
Its arguments are ud, an opaque pointer passed to lua_newstate; ptr, a pointer
to the block being allocated/reallocated/freed; osize, the original size of the block;
nsize, the new size of the block. ptr is NULL if and only if osize is zero. When
nsize is zero, the allocator must return NULL; if osize is not zero, it should free
the block pointed to by ptr. When nsize is not zero, the allocator returns NULL
if and only if it cannot fill the request. When nsize is not zero and osize is zero,
the allocator should behave like malloc. When nsize and osize are not zero, the
allocator behaves like realloc. Lua assumes that the allocator never fails when
osize >= nsize.
Here is a simple implementation for the allocator function. It is used in the auxiliary
library by luaL_newstate.

static void *l_alloc (void *ud, void *ptr, size_t osize,
size_t nsize) {

(void)ud; (void)osize; /* not used */
if (nsize == 0) {
free(ptr);

http://www.lua.org/manual/5.1/manual.html#lua_newstate
http://www.lua.org/manual/5.1/manual.html#luaL_newstate

2

return NULL;
}
else
return realloc(ptr, nsize);

}

This code assumes that free(NULL) has no effect and that realloc(NULL, size)
is equivalent to malloc(size). ANSI C ensures both behaviors.

1.2 lua_atpanic

[-0, +0, -]

lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);

Sets a new panic function and returns the old one.
If an error happens outside any protected environment, Lua calls a panic function
and then calls exit(EXIT_FAILURE), thus exiting the host application. Your panic
function can avoid this exit by never returning (e.g., doing a long jump).
The panic function can access the error message at the top of the stack.

1.3 lua_call

[-(nargs + 1), +nresults, e]

void lua_call (lua_State *L, int nargs, int nresults);

Calls a function.
To call a function you must use the following protocol: first, the function to be
called is pushed onto the stack; then, the arguments to the function are pushed in
direct order; that is, the first argument is pushed first. Finally you call lua_call;
nargs is the number of arguments that you pushed onto the stack. All arguments
and the function value are popped from the stack when the function is called. The
function results are pushed onto the stack when the function returns. The number
of results is adjusted to nresults, unless nresults is LUA_MULTRET . In this case,
all results from the function are pushed. Lua takes care that the returned values fit
into the stack space. The function results are pushed onto the stack in direct order
(the first result is pushed first), so that after the call the last result is on the top of
the stack.
Any error inside the called function is propagated upwards (with a longjmp).

http://www.lua.org/manual/5.1/manual.html#lua_call

3

The following example shows how the host program can do the equivalent to this
Lua code:

a = f("how", t.x, 14)

Here it is in C:

lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* function to be called */
lua_pushstring(L, "how"); /* 1st argument */
lua_getfield(L, LUA_GLOBALSINDEX, "t"); /* table to be indexed */
lua_getfield(L, -1, "x"); /* push result of t.x (2nd arg) */
lua_remove(L, -2); /* remove 't' from the stack */
lua_pushinteger(L, 14); /* 3rd argument */
lua_call(L, 3, 1); /* call 'f' with 3 arguments and 1 result */
lua_setfield(L, LUA_GLOBALSINDEX, "a"); /* set global 'a' */

Note that the code above is "balanced": at its end, the stack is back to its original
configuration. This is considered good programming practice.

1.4 lua_CFunction

typedef int (*lua_CFunction) (lua_State *L);

Type for C functions.
In order to communicate properly with Lua, a C function must use the following
protocol, which defines the way parameters and results are passed: a C function
receives its arguments from Lua in its stack in direct order (the first argument is
pushed first). So, when the function starts, lua_gettop(L) returns the number of
arguments received by the function. The first argument (if any) is at index 1 and
its last argument is at index lua_gettop(L). To return values to Lua, a C function
just pushes them onto the stack, in direct order (the first result is pushed first), and
returns the number of results. Any other value in the stack below the results will
be properly discarded by Lua. Like a Lua function, a C function called by Lua can
also return many results.
As an example, the following function receives a variable number of numerical ar-
guments and returns their average and sum:

static int foo (lua_State *L) {
int n = lua_gettop(L); /* number of arguments */
lua_Number sum = 0;
int i;
for (i = 1; i <= n; i++) {

4

if (!lua_isnumber(L, i)) {
lua_pushstring(L, "incorrect argument");
lua_error(L);

}
sum += lua_tonumber(L, i);

}
lua_pushnumber(L, sum/n); /* first result */
lua_pushnumber(L, sum); /* second result */
return 2; /* number of results */

}

1.5 lua_checkstack

[-0, +0, m]

int lua_checkstack (lua_State *L, int extra);

Ensures that there are at least extra free stack slots in the stack. It returns false if
it cannot grow the stack to that size. This function never shrinks the stack; if the
stack is already larger than the new size, it is left unchanged.

1.6 lua_close

[-0, +0, -]

void lua_close (lua_State *L);

Destroys all objects in the given Lua state (calling the corresponding garbage-col-
lection metamethods, if any) and frees all dynamic memory used by this state. On
several platforms, you may not need to call this function, because all resources are
naturally released when the host program ends. On the other hand, long-running
programs, such as a daemon or a web server, might need to release states as soon
as they are not needed, to avoid growing too large.

1.7 lua_concat

[-n, +1, e]

void lua_concat (lua_State *L, int n);

5

Concatenates the n values at the top of the stack, pops them, and leaves the result
at the top. If n is 1, the result is the single value on the stack (that is, the function
does nothing); if n is 0, the result is the empty string. Concatenation is performed
following the usual semantics of Lua (see §2.5.4).

1.8 lua_cpcall

[-0, +(0|1), -]

int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);

Calls the C function func in protected mode. func starts with only one element
in its stack, a light userdata containing ud. In case of errors, lua_cpcall returns
the same error codes as lua_pcall, plus the error object on the top of the stack;
otherwise, it returns zero, and does not change the stack. All values returned by
func are discarded.

1.9 lua_createtable

[-0, +1, m]

void lua_createtable (lua_State *L, int narr, int nrec);

Creates a new empty table and pushes it onto the stack. The new table has space
pre-allocated for narr array elements and nrec non-array elements. This pre-al-
location is useful when you know exactly how many elements the table will have.
Otherwise you can use the function lua_newtable.

1.10 lua_dump

[-0, +0, m]

int lua_dump (lua_State *L, lua_Writer writer, void *data);

Dumps a function as a binary chunk. Receives a Lua function on the top of the stack
and produces a binary chunk that, if loaded again, results in a function equivalent to
the one dumped. As it produces parts of the chunk, lua_dump calls function writer
(see lua_Writer) with the given data to write them.
The value returned is the error code returned by the last call to the writer; 0 means
no errors.

http://www.lua.org/manual/5.1/manual.html#2.5.4
http://www.lua.org/manual/5.1/manual.html#lua_cpcall
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_newtable
http://www.lua.org/manual/5.1/manual.html#lua_dump
http://www.lua.org/manual/5.1/manual.html#lua_Writer

6

This function does not pop the Lua function from the stack.

1.11 lua_equal

[-0, +0, e]

int lua_equal (lua_State *L, int index1, int index2);

Returns 1 if the two values in acceptable indices index1 and index2 are equal,
following the semantics of the Lua == operator (that is, may call metamethods).
Otherwise returns 0. Also returns 0 if any of the indices is non valid.

1.12 lua_error

[-1, +0, v]

int lua_error (lua_State *L);

Generates a Lua error. The error message (which can actually be a Lua value of
any type) must be on the stack top. This function does a long jump, and therefore
never returns. (see luaL_error).

1.13 lua_gc

[-0, +0, e]

int lua_gc (lua_State *L, int what, int data);

Controls the garbage collector.
This function performs several tasks, according to the value of the parameter what:

• LUA_GCSTOP: stops the garbage collector.

• LUA_GCRESTART: restarts the garbage collector.

• LUA_GCCOLLECT: performs a full garbage-collection cycle.

• LUA_GCCOUNT: returns the current amount of memory (in Kbytes) in use by Lua.

• LUA_GCCOUNTB: returns the remainder of dividing the current amount of bytes of
memory in use by Lua by 1024.

http://www.lua.org/manual/5.1/manual.html#luaL_error

7

• LUA_GCSTEP: performs an incremental step of garbage collection. The step "size"
is controlled by data (larger values mean more steps) in a non-specified way.
If you want to control the step size you must experimentally tune the value of
data. The function returns 1 if the step finished a garbage-collection cycle.

• LUA_GCSETPAUSE: sets data as the new value for the pause of the collector (see
§2.10). The function returns the previous value of the pause.

• LUA_GCSETSTEPMUL: sets data as the new value for the step multiplier of the
collector (see §2.10). The function returns the previous value of the step mul-
tiplier.

1.14 lua_getallocf

[-0, +0, -]

lua_Alloc lua_getallocf (lua_State *L, void **ud);

Returns the memory-allocation function of a given state. If ud is not NULL, Lua
stores in *ud the opaque pointer passed to lua_newstate.

1.15 lua_getfenv

[-0, +1, -]

void lua_getfenv (lua_State *L, int index);

Pushes onto the stack the environment table of the value at the given index.

1.16 lua_getfield

[-0, +1, e]

void lua_getfield (lua_State *L, int index, const char *k);

Pushes onto the stack the value t[k], where t is the value at the given valid index.
As in Lua, this function may trigger a metamethod for the "index" event (see §2.8).

1.17 lua_getglobal

[-0, +1, e]

http://www.lua.org/manual/5.1/manual.html#2.10
http://www.lua.org/manual/5.1/manual.html#2.10
http://www.lua.org/manual/5.1/manual.html#lua_newstate
http://www.lua.org/manual/5.1/manual.html#2.8

8

void lua_getglobal (lua_State *L, const char *name);

Pushes onto the stack the value of the global name. It is defined as a macro:

##define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, s)

1.18 lua_getmetatable

[-0, +(0|1), -]

int lua_getmetatable (lua_State *L, int index);

Pushes onto the stack the metatable of the value at the given acceptable index.
If the index is not valid, or if the value does not have a metatable, the function
returns 0 and pushes nothing on the stack.

1.19 lua_gettable

[-1, +1, e]

void lua_gettable (lua_State *L, int index);

Pushes onto the stack the value t[k], where t is the value at the given valid index
and k is the value at the top of the stack.
This function pops the key from the stack (putting the resulting value in its place).
As in Lua, this function may trigger a metamethod for the "index" event (see §2.8).

1.20 lua_gettop

[-0, +0, -]

int lua_gettop (lua_State *L);

Returns the index of the top element in the stack. Because indices start at 1, this
result is equal to the number of elements in the stack (and so 0 means an empty
stack).

1.21 lua_insert

[-1, +1, -]

http://www.lua.org/manual/5.1/manual.html#2.8

9

void lua_insert (lua_State *L, int index);

Moves the top element into the given valid index, shifting up the elements above this
index to open space. Cannot be called with a pseudo-index, because a pseudo-index
is not an actual stack position.

1.22 lua_Integer

typedef ptrdiff_t lua_Integer;

The type used by the Lua API to represent integral values.
By default it is a ptrdiff_t, which is usually the largest signed integral type the
machine handles "comfortably".

1.23 lua_isboolean

[-0, +0, -]

int lua_isboolean (lua_State *L, int index);

Returns 1 if the value at the given acceptable index has type boolean, and 0 other-
wise.

1.24 lua_iscfunction

[-0, +0, -]

int lua_iscfunction (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a C function, and 0 otherwise.

1.25 lua_isfunction

[-0, +0, -]

int lua_isfunction (lua_State *L, int index);

10

Returns 1 if the value at the given acceptable index is a function (either C or Lua),
and 0 otherwise.

1.26 lua_islightuserdata

[-0, +0, -]

int lua_islightuserdata (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a light userdata, and 0 oth-
erwise.

1.27 lua_isnil

[-0, +0, -]

int lua_isnil (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is nil, and 0 otherwise.

1.28 lua_isnone

[-0, +0, -]

int lua_isnone (lua_State *L, int index);

Returns 1 if the given acceptable index is not valid (that is, it refers to an element
outside the current stack), and 0 otherwise.

1.29 lua_isnoneornil

[-0, +0, -]

int lua_isnoneornil (lua_State *L, int index);

Returns 1 if the given acceptable index is not valid (that is, it refers to an element
outside the current stack) or if the value at this index is nil, and 0 otherwise.

1.30 lua_isnumber

[-0, +0, -]

11

int lua_isnumber (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a number or a string convert-
ible to a number, and 0 otherwise.

1.31 lua_isstring

[-0, +0, -]

int lua_isstring (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a string or a number (which
is always convertible to a string), and 0 otherwise.

1.32 lua_istable

[-0, +0, -]

int lua_istable (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a table, and 0 otherwise.

1.33 lua_isthread

[-0, +0, -]

int lua_isthread (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a thread, and 0 otherwise.

1.34 lua_isuserdata

[-0, +0, -]

int lua_isuserdata (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a userdata (either full or
light), and 0 otherwise.

1.35 lua_lessthan

[-0, +0, e]

12

int lua_lessthan (lua_State *L, int index1, int index2);

Returns 1 if the value at acceptable index index1 is smaller than the value at
acceptable index index2, following the semantics of the Lua < operator (that is,
may call metamethods). Otherwise returns 0. Also returns 0 if any of the indices is
non valid.

1.36 lua_load

[-0, +1, -]

int lua_load (lua_State *L,
lua_Reader reader,
void *data,
const char *chunkname);

Loads a Lua chunk. If there are no errors, lua_load pushes the compiled chunk
as a Lua function on top of the stack. Otherwise, it pushes an error message. The
return values of lua_load are:

• 0: no errors;

• LUA_ERRSYNTAX : syntax error during pre-compilation;

• LUA_ERRMEM: memory allocation error.

This function only loads a chunk; it does not run it.
lua_load automatically detects whether the chunk is text or binary, and loads it
accordingly (see program luac).
The lua_load function uses a user-supplied reader function to read the chunk (see
lua_Reader). The data argument is an opaque value passed to the reader function.
The chunkname argument gives a name to the chunk, which is used for error messages
and in debug information (see §3.8).

1.37 lua_newstate

[-0, +0, -]

lua_State *lua_newstate (lua_Alloc f, void *ud);

Creates a new, independent state. Returns NULL if cannot create the state (due to
lack of memory). The argument f is the allocator function; Lua does all memory

http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#pdf-LUA_ERRMEM
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_Reader
http://www.lua.org/manual/5.1/manual.html#3.8

13

allocation for this state through this function. The second argument, ud, is an
opaque pointer that Lua simply passes to the allocator in every call.

1.38 lua_newtable

[-0, +1, m]

void lua_newtable (lua_State *L);

Creates a new empty table and pushes it onto the stack. It is equivalent to lua_createtable(L,
0, 0).

1.39 lua_newthread

[-0, +1, m]

lua_State *lua_newthread (lua_State *L);

Creates a new thread, pushes it on the stack, and returns a pointer to a lua_State
that represents this new thread. The new state returned by this function shares
with the original state all global objects (such as tables), but has an independent
execution stack.
There is no explicit function to close or to destroy a thread. Threads are subject to
garbage collection, like any Lua object.

1.40 lua_newuserdata

[-0, +1, m]

void *lua_newuserdata (lua_State *L, size_t size);

This function allocates a new block of memory with the given size, pushes onto the
stack a new full userdata with the block address, and returns this address.
Userdata represent C values in Lua. A full userdata represents a block of memory.
It is an object (like a table): you must create it, it can have its own metatable,
and you can detect when it is being collected. A full userdata is only equal to itself
(under raw equality).

http://www.lua.org/manual/5.1/manual.html#lua_State

14

When Lua collects a full userdata with a gc metamethod, Lua calls the metamethod
and marks the userdata as finalized. When this userdata is collected again then Lua
frees its corresponding memory.

1.41 lua_next

[-1, +(2|0), e]

int lua_next (lua_State *L, int index);

Pops a key from the stack, and pushes a key-value pair from the table at the given
index (the "next" pair after the given key). If there are no more elements in the
table, then lua_next returns 0 (and pushes nothing).
A typical traversal looks like this:

/* table is in the stack at index 't' */
lua_pushnil(L); /* first key */
while (lua_next(L, t) != 0) {
/* uses 'key' (at index -2) and 'value' (at index -1) */
printf("%s - %s\n",

lua_typename(L, lua_type(L, -2)),
lua_typename(L, lua_type(L, -1)));

/* removes 'value'; keeps 'key' for next iteration */
lua_pop(L, 1);

}

While traversing a table, do not call lua_tolstring directly on a key, unless you
know that the key is actually a string. Recall that lua_tolstring changes the value
at the given index; this confuses the next call to lua_next.

1.42 lua_Number

typedef double lua_Number;

The type of numbers in Lua. By default, it is double, but that can be changed in
luaconf.h.
Through the configuration file you can change Lua to operate with another type for
numbers (e.g., float or long).

1.43 lua_objlen

[-0, +0, -]

http://www.lua.org/manual/5.1/manual.html#lua_next
http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_next

15

size_t lua_objlen (lua_State *L, int index);

Returns the "length" of the value at the given acceptable index: for strings, this
is the string length; for tables, this is the result of the length operator ('#'); for
userdata, this is the size of the block of memory allocated for the userdata; for other
values, it is 0.

1.44 lua_pcall

[-(nargs + 1), +(nresults|1), -]

int lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);

Calls a function in protected mode.
Both nargs and nresults have the same meaning as in lua_call. If there are no
errors during the call, lua_pcall behaves exactly like lua_call. However, if there
is any error, lua_pcall catches it, pushes a single value on the stack (the error
message), and returns an error code. Like lua_call, lua_pcall always removes
the function and its arguments from the stack.
If errfunc is 0, then the error message returned on the stack is exactly the original
error message. Otherwise, errfunc is the stack index of an error handler function.
(In the current implementation, this index cannot be a pseudo-index.) In case of
runtime errors, this function will be called with the error message and its return
value will be the message returned on the stack by lua_pcall.
Typically, the error handler function is used to add more debug information to the
error message, such as a stack traceback. Such information cannot be gathered after
the return of lua_pcall, since by then the stack has unwound.
The lua_pcall function returns 0 in case of success or one of the following error
codes (defined in lua.h):

• LUA_ERRRUN : a runtime error.

• LUA_ERRMEM : memory allocation error. For such errors, Lua does not call the
error handler function.

• LUA_ERRERR : error while running the error handler function.

1.45 lua_pop

[-n, +0, -]

void lua_pop (lua_State *L, int n);

http://www.lua.org/manual/5.1/manual.html#lua_call
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_call
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_call
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_pcall

16

Pops n elements from the stack.

1.46 lua_pushboolean

[-0, +1, -]

void lua_pushboolean (lua_State *L, int b);

Pushes a boolean value with value b onto the stack.

1.47 lua_pushcclosure

[-n, +1, m]

void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);

Pushes a new C closure onto the stack.
When a C function is created, it is possible to associate some values with it, thus
creating a C closure (see §3.4); these values are then accessible to the function
whenever it is called. To associate values with a C function, first these values
should be pushed onto the stack (when there are multiple values, the first value is
pushed first). Then lua_pushcclosure is called to create and push the C function
onto the stack, with the argument n telling how many values should be associated
with the function. lua_pushcclosure also pops these values from the stack.
The maximum value for n is 255.

1.48 lua_pushcfunction

[-0, +1, m]

void lua_pushcfunction (lua_State *L, lua_CFunction f);

Pushes a C function onto the stack. This function receives a pointer to a C function
and pushes onto the stack a Lua value of type function that, when called, invokes
the corresponding C function.
Any function to be registered in Lua must follow the correct protocol to receive its
parameters and return its results (see lua_CFunction).
lua_pushcfunction is defined as a macro:

http://www.lua.org/manual/5.1/manual.html#3.4
http://www.lua.org/manual/5.1/manual.html#lua_pushcclosure
http://www.lua.org/manual/5.1/manual.html#lua_pushcclosure
http://www.lua.org/manual/5.1/manual.html#lua_CFunction

17

##define lua_pushcfunction(L,f) lua_pushcclosure(L,f,0)

1.49 lua_pushfstring

[-0, +1, m]

const char *lua_pushfstring (lua_State *L, const char *fmt, ...);

Pushes onto the stack a formatted string and returns a pointer to this string. It is
similar to the C function sprintf, but has some important differences:

• You do not have to allocate space for the result: the result is a Lua string and Lua
takes care of memory allocation (and deallocation, through garbage collection).

• The conversion specifiers are quite restricted. There are no flags, widths, or
precisions. The conversion specifiers can only be '%%' (inserts a '%' in the string),
'%s' (inserts a zero-terminated string, with no size restrictions), '%f' (inserts a
lua_Number), '%p' (inserts a pointer as a hexadecimal numeral), '%d' (inserts an
int), and '%c' (inserts an int as a character).

1.50 lua_pushinteger

[-0, +1, -]

void lua_pushinteger (lua_State *L, lua_Integer n);

Pushes a number with value n onto the stack.

1.51 lua_pushlightuserdata

[-0, +1, -]

void lua_pushlightuserdata (lua_State *L, void *p);

Pushes a light userdata onto the stack.
Userdata represent C values in Lua. A light userdata represents a pointer. It is a
value (like a number): you do not create it, it has no individual metatable, and it

http://www.lua.org/manual/5.1/manual.html#lua_Number

18

is not collected (as it was never created). A light userdata is equal to "any" light
userdata with the same C address.

1.52 lua_pushliteral

[-0, +1, m]

void lua_pushliteral (lua_State *L, const char *s);

This macro is equivalent to lua_pushlstring, but can be used only when s is a
literal string. In these cases, it automatically provides the string length.

1.53 lua_pushlstring

[-0, +1, m]

void lua_pushlstring (lua_State *L, const char *s, size_t len);

Pushes the string pointed to by s with size len onto the stack. Lua makes (or
reuses) an internal copy of the given string, so the memory at s can be freed or
reused immediately after the function returns. The string can contain embedded
zeros.

1.54 lua_pushnil

[-0, +1, -]

void lua_pushnil (lua_State *L);

Pushes a nil value onto the stack.

1.55 lua_pushnumber

[-0, +1, -]

void lua_pushnumber (lua_State *L, lua_Number n);

Pushes a number with value n onto the stack.

1.56 lua_pushstring

[-0, +1, m]

http://www.lua.org/manual/5.1/manual.html#lua_pushlstring

19

void lua_pushstring (lua_State *L, const char *s);

Pushes the zero-terminated string pointed to by s onto the stack. Lua makes (or
reuses) an internal copy of the given string, so the memory at s can be freed or
reused immediately after the function returns. The string cannot contain embedded
zeros; it is assumed to end at the first zero.

1.57 lua_pushthread

[-0, +1, -]

int lua_pushthread (lua_State *L);

Pushes the thread represented by L onto the stack. Returns 1 if this thread is the
main thread of its state.

1.58 lua_pushvalue

[-0, +1, -]

void lua_pushvalue (lua_State *L, int index);

Pushes a copy of the element at the given valid index onto the stack.

1.59 lua_pushvfstring

[-0, +1, m]

const char *lua_pushvfstring (lua_State *L,
const char *fmt,
va_list argp);

Equivalent to lua_pushfstring, except that it receives a va_list instead of a
variable number of arguments.

1.60 lua_rawequal

[-0, +0, -]

int lua_rawequal (lua_State *L, int index1, int index2);

http://www.lua.org/manual/5.1/manual.html#lua_pushfstring

20

Returns 1 if the two values in acceptable indices index1 and index2 are primitively
equal (that is, without calling metamethods). Otherwise returns 0. Also returns 0
if any of the indices are non valid.

1.61 lua_rawget

[-1, +1, -]

void lua_rawget (lua_State *L, int index);

Similar to lua_gettable, but does a raw access (i.e., without metamethods).

1.62 lua_rawgeti

[-0, +1, -]

void lua_rawgeti (lua_State *L, int index, int n);

Pushes onto the stack the value t[n], where t is the value at the given valid index.
The access is raw; that is, it does not invoke metamethods.

1.63 lua_rawset

[-2, +0, m]

void lua_rawset (lua_State *L, int index);

Similar to lua_settable, but does a raw assignment (i.e., without metamethods).

1.64 lua_rawseti

[-1, +0, m]

void lua_rawseti (lua_State *L, int index, int n);

Does the equivalent of t[n] = v, where t is the value at the given valid index and
v is the value at the top of the stack.

http://www.lua.org/manual/5.1/manual.html#lua_gettable
http://www.lua.org/manual/5.1/manual.html#lua_settable

21

This function pops the value from the stack. The assignment is raw; that is, it does
not invoke metamethods.

1.65 lua_Reader

typedef const char * (*lua_Reader) (lua_State *L,
void *data,
size_t *size);

The reader function used by lua_load. Every time it needs another piece of the
chunk, lua_load calls the reader, passing along its data parameter. The reader
must return a pointer to a block of memory with a new piece of the chunk and
set size to the block size. The block must exist until the reader function is called
again. To signal the end of the chunk, the reader must return NULL or set size to
zero. The reader function may return pieces of any size greater than zero.

1.66 lua_register

[-0, +0, e]

void lua_register (lua_State *L,
const char *name,
lua_CFunction f);

Sets the C function f as the new value of global name. It is defined as a macro:

##define lua_register(L,n,f) \
(lua_pushcfunction(L, f), lua_setglobal(L, n))

1.67 lua_remove

[-1, +0, -]

void lua_remove (lua_State *L, int index);

Removes the element at the given valid index, shifting down the elements above this
index to fill the gap. Cannot be called with a pseudo-index, because a pseudo-index
is not an actual stack position.

1.68 lua_replace

[-1, +0, -]

http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load

22

void lua_replace (lua_State *L, int index);

Moves the top element into the given position (and pops it), without shifting any
element (therefore replacing the value at the given position).

1.69 lua_resume

[-?, +?, -]

int lua_resume (lua_State *L, int narg);

Starts and resumes a coroutine in a given thread.
To start a coroutine, you first create a new thread (see lua_newthread); then you
push onto its stack the main function plus any arguments; then you call lua_resume,
with narg being the number of arguments. This call returns when the coroutine
suspends or finishes its execution. When it returns, the stack contains all values
passed to lua_yield, or all values returned by the body function. lua_resume
returns LUA_YIELD if the coroutine yields, 0 if the coroutine finishes its execution
without errors, or an error code in case of errors (see lua_pcall). In case of errors,
the stack is not unwound, so you can use the debug API over it. The error message
is on the top of the stack. To restart a coroutine, you put on its stack only the
values to be passed as results from yield, and then call lua_resume.

1.70 lua_setallocf

[-0, +0, -]

void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);

Changes the allocator function of a given state to f with user data ud.

1.71 lua_setfenv

[-1, +0, -]

int lua_setfenv (lua_State *L, int index);

http://www.lua.org/manual/5.1/manual.html#lua_newthread
http://www.lua.org/manual/5.1/manual.html#lua_resume
http://www.lua.org/manual/5.1/manual.html#lua_yield
http://www.lua.org/manual/5.1/manual.html#lua_resume
http://www.lua.org/manual/5.1/manual.html#pdf-LUA_YIELD
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_resume

23

Pops a table from the stack and sets it as the new environment for the value at the
given index. If the value at the given index is neither a function nor a thread nor a
userdata, lua_setfenv returns 0. Otherwise it returns 1.

1.72 lua_setfield

[-1, +0, e]

void lua_setfield (lua_State *L, int index, const char *k);

Does the equivalent to t[k] = v, where t is the value at the given valid index and
v is the value at the top of the stack.
This function pops the value from the stack. As in Lua, this function may trigger a
metamethod for the "newindex" event (see §2.8).

1.73 lua_setglobal

[-1, +0, e]

void lua_setglobal (lua_State *L, const char *name);

Pops a value from the stack and sets it as the new value of global name. It is defined
as a macro:

##define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, s)

1.74 lua_setmetatable

[-1, +0, -]

int lua_setmetatable (lua_State *L, int index);

Pops a table from the stack and sets it as the new metatable for the value at the
given acceptable index.

1.75 lua_settable

[-2, +0, e]

void lua_settable (lua_State *L, int index);

http://www.lua.org/manual/5.1/manual.html#lua_setfenv
http://www.lua.org/manual/5.1/manual.html#2.8

24

Does the equivalent to t[k] = v, where t is the value at the given valid index, v is
the value at the top of the stack, and k is the value just below the top.
This function pops both the key and the value from the stack. As in Lua, this
function may trigger a metamethod for the "newindex" event (see §2.8).

1.76 lua_settop

[-?, +?, -]

void lua_settop (lua_State *L, int index);

Accepts any acceptable index, or 0, and sets the stack top to this index. If the new
top is larger than the old one, then the new elements are filled with nil. If index
is 0, then all stack elements are removed.

1.77 lua_State

typedef struct lua_State lua_State;

Opaque structure that keeps the whole state of a Lua interpreter. The Lua library
is fully reentrant: it has no global variables. All information about a state is kept
in this structure.
A pointer to this state must be passed as the first argument to every function in the
library, except to lua_newstate, which creates a Lua state from scratch.

1.78 lua_status

[-0, +0, -]

int lua_status (lua_State *L);

Returns the status of the thread L.
The status can be 0 for a normal thread, an error code if the thread finished its
execution with an error, or LUA_YIELD if the thread is suspended.

1.79 lua_toboolean

[-0, +0, -]

int lua_toboolean (lua_State *L, int index);

http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#lua_newstate

25

Converts the Lua value at the given acceptable index to a C boolean value (0 or 1).
Like all tests in Lua, lua_toboolean returns 1 for any Lua value different from false
and nil; otherwise it returns 0. It also returns 0 when called with a non-valid index.
(If you want to accept only actual boolean values, use lua_isboolean to test the
value's type.)

1.80 lua_tocfunction

[-0, +0, -]

lua_CFunction lua_tocfunction (lua_State *L, int index);

Converts a value at the given acceptable index to a C function. That value must be
a C function; otherwise, returns NULL.

1.81 lua_tointeger

[-0, +0, -]

lua_Integer lua_tointeger (lua_State *L, int index);

Converts the Lua value at the given acceptable index to the signed integral type
lua_Integer. The Lua value must be a number or a string convertible to a number
(see §2.2.1); otherwise, lua_tointeger returns 0.
If the number is not an integer, it is truncated in some non-specified way.

1.82 lua_tolstring

[-0, +0, m]

const char *lua_tolstring (lua_State *L, int index, size_t *len);

Converts the Lua value at the given acceptable index to a C string. If len is not
NULL, it also sets *len with the string length. The Lua value must be a string
or a number; otherwise, the function returns NULL. If the value is a number, then
lua_tolstring also changes the actual value in the stack to a string. (This change
confuses lua_next when lua_tolstring is applied to keys during a table traversal.)
lua_tolstring returns a fully aligned pointer to a string inside the Lua state. This
string always has a zero ('\0') after its last character (as in C), but can contain
other zeros in its body. Because Lua has garbage collection, there is no guarantee

http://www.lua.org/manual/5.1/manual.html#lua_toboolean
http://www.lua.org/manual/5.1/manual.html#lua_isboolean
http://www.lua.org/manual/5.1/manual.html#lua_Integer
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#lua_tointeger
http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_next
http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_tolstring

26

that the pointer returned by lua_tolstring will be valid after the corresponding
value is removed from the stack.

1.83 lua_tonumber

[-0, +0, -]

lua_Number lua_tonumber (lua_State *L, int index);

Converts the Lua value at the given acceptable index to the C type lua_Number (see
lua_Number). The Lua value must be a number or a string convertible to a number
(see §2.2.1); otherwise, lua_tonumber returns 0.

1.84 lua_topointer

[-0, +0, -]

const void *lua_topointer (lua_State *L, int index);

Converts the value at the given acceptable index to a generic C pointer (void*). The
value can be a userdata, a table, a thread, or a function; otherwise, lua_topointer
returns NULL. Different objects will give different pointers. There is no way to convert
the pointer back to its original value.
Typically this function is used only for debug information.

1.85 lua_tostring

[-0, +0, m]

const char *lua_tostring (lua_State *L, int index);

Equivalent to lua_tolstring with len equal to NULL.

1.86 lua_tothread

[-0, +0, -]

lua_State *lua_tothread (lua_State *L, int index);

http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_Number
http://www.lua.org/manual/5.1/manual.html#lua_Number
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#lua_tonumber
http://www.lua.org/manual/5.1/manual.html#lua_topointer
http://www.lua.org/manual/5.1/manual.html#lua_tolstring

27

Converts the value at the given acceptable index to a Lua thread (represented as
lua_State*). This value must be a thread; otherwise, the function returns NULL.

1.87 lua_touserdata

[-0, +0, -]

void *lua_touserdata (lua_State *L, int index);

If the value at the given acceptable index is a full userdata, returns its block address.
If the value is a light userdata, returns its pointer. Otherwise, returns NULL.

1.88 lua_type

[-0, +0, -]

int lua_type (lua_State *L, int index);

Returns the type of the value in the given acceptable index, or LUA_TNONE for a
non-valid index (that is, an index to an "empty" stack position). The types returned
by lua_type are coded by the following constants defined in lua.h: LUA_TNIL,
LUA_TNUMBER, LUA_TBOOLEAN, LUA_TSTRING, LUA_TTABLE, LUA_TFUNCTION, LUA_TUSERDATA,
LUA_TTHREAD, and LUA_TLIGHTUSERDATA.

1.89 lua_typename

[-0, +0, -]

const char *lua_typename (lua_State *L, int tp);

Returns the name of the type encoded by the value tp, which must be one the values
returned by lua_type.

1.90 lua_Writer

typedef int (*lua_Writer) (lua_State *L,
const void* p,
size_t sz,
void* ud);

http://www.lua.org/manual/5.1/manual.html#lua_type
http://www.lua.org/manual/5.1/manual.html#lua_type

28

The type of the writer function used by lua_dump. Every time it produces another
piece of chunk, lua_dump calls the writer, passing along the buffer to be written (p),
its size (sz), and the data parameter supplied to lua_dump.
The writer returns an error code: 0 means no errors; any other value means an error
and stops lua_dump from calling the writer again.

1.91 lua_xmove

[-?, +?, -]

void lua_xmove (lua_State *from, lua_State *to, int n);

Exchange values between different threads of the same global state.
This function pops n values from the stack from, and pushes them onto the stack
to.

1.92 lua_yield

[-?, +?, -]

int lua_yield (lua_State *L, int nresults);

Yields a coroutine.
This function should only be called as the return expression of a C function, as
follows:

return lua_yield (L, nresults);

When a C function calls lua_yield in that way, the running coroutine suspends
its execution, and the call to lua_resume that started this coroutine returns. The
parameter nresults is the number of values from the stack that are passed as results
to lua_resume.

2 3.8 - The Debug Interface

Lua has no built-in debugging facilities. Instead, it offers a special interface by
means of functions and hooks. This interface allows the construction of different

http://www.lua.org/manual/5.1/manual.html#lua_dump
http://www.lua.org/manual/5.1/manual.html#lua_dump
http://www.lua.org/manual/5.1/manual.html#lua_dump
http://www.lua.org/manual/5.1/manual.html#lua_dump
http://www.lua.org/manual/5.1/manual.html#lua_yield
http://www.lua.org/manual/5.1/manual.html#lua_resume
http://www.lua.org/manual/5.1/manual.html#lua_resume

29

kinds of debuggers, profilers, and other tools that need "inside information" from
the interpreter.

2.1 lua_Debug

typedef struct lua_Debug {
int event;
const char *name; /* (n) */
const char *namewhat; /* (n) */
const char *what; /* (S) */
const char *source; /* (S) */
int currentline; /* (l) */
int nups; /* (u) number of upvalues */
int linedefined; /* (S) */
int lastlinedefined; /* (S) */
char short_src[LUA_IDSIZE]; /* (S) */
/* private part */
{\em other fields}

} lua_Debug;

A structure used to carry different pieces of information about an active function.
lua_getstack fills only the private part of this structure, for later use. To fill the
other fields of lua_Debug with useful information, call lua_getinfo.
The fields of lua_Debug have the following meaning:

• source: If the function was defined in a string, then source is that string. If
the function was defined in a file, then source starts with a '@' followed by the
file name.

• short_src: a "printable" version of source, to be used in error messages.

• linedefined: the line number where the definition of the function starts.

• lastlinedefined: the line number where the definition of the function ends.

• what: the string "Lua" if the function is a Lua function, "C" if it is a C function,
"main" if it is the main part of a chunk, and "tail" if it was a function that did
a tail call. In the latter case, Lua has no other information about the function.

• currentline: the current line where the given function is executing. When no
line information is available, currentline is set to -1.

http://www.lua.org/manual/5.1/manual.html#lua_getstack
http://www.lua.org/manual/5.1/manual.html#lua_Debug
http://www.lua.org/manual/5.1/manual.html#lua_getinfo
http://www.lua.org/manual/5.1/manual.html#lua_Debug

30

• name: a reasonable name for the given function. Because functions in Lua are
first-class values, they do not have a fixed name: some functions can be the
value of multiple global variables, while others can be stored only in a table
field. The lua_getinfo function checks how the function was called to find a
suitable name. If it cannot find a name, then name is set to NULL.

• namewhat: explains the name field. The value of namewhat can be "global",
"local", "method", "field", "upvalue", or "" (the empty string), according
to how the function was called. (Lua uses the empty string when no other option
seems to apply.)

• nups: the number of upvalues of the function.

2.2 lua_gethook

[-0, +0, -]

lua_Hook lua_gethook (lua_State *L);

Returns the current hook function.

2.3 lua_gethookcount

[-0, +0, -]

int lua_gethookcount (lua_State *L);

Returns the current hook count.

2.4 lua_gethookmask

[-0, +0, -]

int lua_gethookmask (lua_State *L);

Returns the current hook mask.

2.5 lua_getinfo

[-(0|1), +(0|1|2), m]

31

int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);

Returns information about a specific function or function invocation.
To get information about a function invocation, the parameter ar must be a valid
activation record that was filled by a previous call to lua_getstack or given as
argument to a hook (see lua_Hook).
To get information about a function you push it onto the stack and start the what
string with the character '>'. (In that case, lua_getinfo pops the function in the
top of the stack.) For instance, to know in which line a function f was defined, you
can write the following code:

lua_Debug ar;
lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* get global 'f' */
lua_getinfo(L, ">S", \&ar);
printf("%d\n", ar.linedefined);

Each character in the string what selects some fields of the structure ar to be filled
or a value to be pushed on the stack:

• 'n': fills in the field name and namewhat;

• 'S': fills in the fields source, short_src, linedefined, lastlinedefined, and
what;

• 'l': fills in the field currentline;

• 'u': fills in the field nups;

• 'f': pushes onto the stack the function that is running at the given level;

• 'L': pushes onto the stack a table whose indices are the numbers of the lines that
are valid on the function. (A valid line is a line with some associated code, that
is, a line where you can put a break point. Non-valid lines include empty lines
and comments.)

This function returns 0 on error (for instance, an invalid option in what).

2.6 lua_getlocal

[-0, +(0|1), -]

const char *lua_getlocal (lua_State *L, lua_Debug *ar, int n);

http://www.lua.org/manual/5.1/manual.html#lua_getstack
http://www.lua.org/manual/5.1/manual.html#lua_Hook

32

Gets information about a local variable of a given activation record. The para-
meter ar must be a valid activation record that was filled by a previous call to
lua_getstack or given as argument to a hook (see lua_Hook). The index n selects
which local variable to inspect (1 is the first parameter or active local variable, and
so on, until the last active local variable). lua_getlocal pushes the variable's value
onto the stack and returns its name.
Variable names starting with '(' (open parentheses) represent internal variables (loop
control variables, temporaries, and C function locals).
Returns NULL (and pushes nothing) when the index is greater than the number of
active local variables.

2.7 lua_getstack

[-0, +0, -]

int lua_getstack (lua_State *L, int level, lua_Debug *ar);

Get information about the interpreter runtime stack.
This function fills parts of a lua_Debug structure with an identification of the ac-
tivation record of the function executing at a given level. Level 0 is the current
running function, whereas level n+1 is the function that has called level n. When
there are no errors, lua_getstack returns 1; when called with a level greater than
the stack depth, it returns 0.

2.8 lua_getupvalue

[-0, +(0|1), -]

const char *lua_getupvalue (lua_State *L, int funcindex, int n);

Gets information about a closure's upvalue. (For Lua functions, upvalues are the
external local variables that the function uses, and that are consequently included in
its closure.) lua_getupvalue gets the index n of an upvalue, pushes the upvalue's
value onto the stack, and returns its name. funcindex points to the closure in the
stack. (Upvalues have no particular order, as they are active through the whole
function. So, they are numbered in an arbitrary order.)

http://www.lua.org/manual/5.1/manual.html#lua_getstack
http://www.lua.org/manual/5.1/manual.html#lua_Hook
http://www.lua.org/manual/5.1/manual.html#lua_getlocal
http://www.lua.org/manual/5.1/manual.html#lua_Debug
http://www.lua.org/manual/5.1/manual.html#lua_getstack
http://www.lua.org/manual/5.1/manual.html#lua_getupvalue

33

Returns NULL (and pushes nothing) when the index is greater than the number of
upvalues. For C functions, this function uses the empty string "" as a name for all
upvalues.

2.9 lua_Hook

typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);

Type for debugging hook functions.
Whenever a hook is called, its ar argument has its field event set to the specific
event that triggered the hook. Lua identifies these events with the following con-
stants: LUA_HOOKCALL , LUA_HOOKRET , LUA_HOOKTAILRET , LUA_HOOKLINE , and
LUA_HOOKCOUNT . Moreover, for line events, the field currentline is also set. To
get the value of any other field in ar, the hook must call lua_getinfo. For return
events, event can be LUA_HOOKRET, the normal value, or LUA_HOOKTAILRET. In the
latter case, Lua is simulating a return from a function that did a tail call; in this
case, it is useless to call lua_getinfo.
While Lua is running a hook, it disables other calls to hooks. Therefore, if a hook
calls back Lua to execute a function or a chunk, this execution occurs without any
calls to hooks.

2.10 lua_sethook

[-0, +0, -]

int lua_sethook (lua_State *L, lua_Hook f, int mask, int count);

Sets the debugging hook function.
Argument f is the hook function. mask specifies on which events the hook will be
called: it is formed by a bitwise or of the constants LUA_MASKCALL , LUA_MASKRET ,
LUA_MASKLINE , and LUA_MASKCOUNT . The count argument is only meaningful when
the mask includes LUA_MASKCOUNT. For each event, the hook is called as explained
below:

• The call hook: is called when the interpreter calls a function. The hook is called
just after Lua enters the new function, before the function gets its arguments.

• The return hook: is called when the interpreter returns from a function. The
hook is called just before Lua leaves the function. You have no access to the
values to be returned by the function.

http://www.lua.org/manual/5.1/manual.html#lua_getinfo
http://www.lua.org/manual/5.1/manual.html#lua_getinfo

34

• The line hook: is called when the interpreter is about to start the execution
of a new line of code, or when it jumps back in the code (even to the same line).
(This event only happens while Lua is executing a Lua function.)

• The count hook: is called after the interpreter executes every count instruc-
tions. (This event only happens while Lua is executing a Lua function.)

A hook is disabled by setting mask to zero.

2.11 lua_setlocal

[-(0|1), +0, -]

const char *lua_setlocal (lua_State *L, lua_Debug *ar, int n);

Sets the value of a local variable of a given activation record. Parameters ar and
n are as in lua_getlocal (see lua_getlocal). lua_setlocal assigns the value at
the top of the stack to the variable and returns its name. It also pops the value
from the stack.
Returns NULL (and pops nothing) when the index is greater than the number of
active local variables.

2.12 lua_setupvalue

[-(0|1), +0, -]

const char *lua_setupvalue (lua_State *L, int funcindex, int n);

Sets the value of a closure's upvalue. It assigns the value at the top of the stack to
the upvalue and returns its name. It also pops the value from the stack. Parameters
funcindex and n are as in the lua_getupvalue (see lua_getupvalue).
Returns NULL (and pops nothing) when the index is greater than the number of
upvalues.

http://www.lua.org/manual/5.1/manual.html#lua_getlocal
http://www.lua.org/manual/5.1/manual.html#lua_getlocal
http://www.lua.org/manual/5.1/manual.html#lua_setlocal
http://www.lua.org/manual/5.1/manual.html#lua_getupvalue
http://www.lua.org/manual/5.1/manual.html#lua_getupvalue

