1 5 - Standard Libraries

The standard Lua libraries provide useful functions that are implemented directly
through the C API. Some of these functions provide essential services to the lan-
guage (e.g., type and getmetatable); others provide access to "outside" services
(e.g., I/O); and others could be implemented in Lua itself, but are quite useful or
have critical performance requirements that deserve an implementation in C (e.g.,
table.sort).

All libraries are implemented through the official C API and are provided as separate
C modules. Currently, Lua has the following standard libraries:

basic library, which includes the coroutine sub-library;
e package library;

e string manipulation;

e table manipulation;

e mathematical functions (sin, log, etc.);

e input and output;

e operating system facilities;

e debug facilities.

Except for the basic and package libraries, each library provides all its functions as
fields of a global table or as methods of its objects.

To have access to these libraries, the C host program should call the 1ual._openlibs
function, which opens all standard libraries. Alternatively, it can open them individ-
ually by calling luaopen_base (for the basic library), luaopen_package (for the
package library), luaopen_string (for the string library), luaopen_table (for the
table library), luaopen_math (for the mathematical library), luaopen_io (for the
I/O library), luaopen_os (for the Operating System library), and luaopen_debug
(for the debug library). These functions are declared in lualib.h and should not

http://www.lua.org/manual/5.1/manual.html#pdf-type
http://www.lua.org/manual/5.1/manual.html#pdf-getmetatable
http://www.lua.org/manual/5.1/manual.html#pdf-table.sort
http://www.lua.org/manual/5.1/manual.html#luaL_openlibs

be called directly: you must call them like any other Lua C function, e.g., by using
lua call.

1.1 5.1 - Basic Functions

The basic library provides some core functions to Lua. If you do not include this
library in your application, you should check carefully whether you need to provide
implementations for some of its facilities.

1.1.1 assert (v [, message])

Issues an error when the value of its argument v is false (i.e., nil or false); otherwise,
returns all its arguments. message is an error message; when absent, it defaults to
"assertion failed!"

1.1.2 collectgarbage (opt [, argl)

This function is a generic interface to the garbage collector. It performs different
functions according to its first argument, opt:

e '"stop": stops the garbage collector.

e '"restart": restarts the garbage collector.

e "collect": performs a full garbage-collection cycle.

e "count": returns the total memory in use by Lua (in Kbytes).

e '"step": performs a garbage-collection step. The step "size" is controlled by arg
(larger values mean more steps) in a non-specified way. If you want to control
the step size you must experimentally tune the value of arg. Returns true if the
step finished a collection cycle.

e '"setpause": sets arg as the new value for the pause of the collector (see §2.10).
Returns the previous value for pause.

e '"setstepmul": sets arg as the new value for the step multiplier of the collector
(see §2.10). Returns the previous value for step.

1.1.3 dofile (filename)

Opens the named file and executes its contents as a Lua chunk. When called without
arguments, dofile executes the contents of the standard input (stdin). Returns

http://www.lua.org/manual/5.1/manual.html#lua_call
http://www.lua.org/manual/5.1/manual.html#2.10
http://www.lua.org/manual/5.1/manual.html#2.10

all values returned by the chunk. In case of errors, dofile propagates the error to
its caller (that is, dofile does not run in protected mode).

1.1.4 error (message [, levell)

Terminates the last protected function called and returns message as the error mes-
sage. Function error never returns.

Usually, error adds some information about the error position at the beginning of
the message. The level argument specifies how to get the error position. With
level 1 (the default), the error position is where the error function was called.
Level 2 points the error to where the function that called error was called; and
so on. Passing a level 0 avoids the addition of error position information to the
message.

1.1.5 _G

A global variable (not a function) that holds the global environment (that is, _G._G
= _G). Lua itself does not use this variable; changing its value does not affect any
environment, nor vice-versa. (Use setfenv to change environments.)

1.1.6 getfenv ([£f])

Returns the current environment in use by the function. f can be a Lua function
or a number that specifies the function at that stack level: Level 1 is the function
calling getfenv. If the given function is not a Lua function, or if £ is 0, getfenv
returns the global environment. The default for f is 1.

1.1.7 getmetatable (object)

If object does not have a metatable, returns nil. Otherwise, if the object’s metat-
able has a "__metatable" field, returns the associated value. Otherwise, returns
the metatable of the given object.

1.1.8 ipairs (t)

Returns three values: an iterator function, the table t, and 0, so that the construc-
tion

for i,v in ipairs(t) do body end

http://www.lua.org/manual/5.1/manual.html#pdf-setfenv

will iterate over the pairs (1,t[1]), (2,t[2]), , up to the first integer key absent
from the table.

1.1.9 load (func [, chunkname])

Loads a chunk using function func to get its pieces. Each call to func must return
a string that concatenates with previous results. A return of an empty string, nil,
or no value signals the end of the chunk.

If there are no errors, returns the compiled chunk as a function; otherwise, returns
nil plus the error message. The environment of the returned function is the global
environment.

chunkname is used as the chunk name for error messages and debug information.
When absent, it defaults to "=(load)".

1.1.10 loadfile ([filename])

Similar to load, but gets the chunk from file filename or from the standard input,
if no file name is given.

1.1.11 1loadstring (string [, chunkname])

Similar to load, but gets the chunk from the given string.
To load and run a given string, use the idiom

assert(loadstring(s)) ()

When absent, chunkname defaults to the given string.

1.1.12 next (table [, index])

Allows a program to traverse all fields of a table. Its first argument is a table and
its second argument is an index in this table. next returns the next index of the
table and its associated value. When called with nil as its second argument, next
returns an initial index and its associated value. When called with the last index,
or with nil in an empty table, next returns nil. If the second argument is absent,
then it is interpreted as nil. In particular, you can use next (t) to check whether a
table is empty.

The order in which the indices are enumerated is not specified, even for numeric
indices. (To traverse a table in numeric order, use a numerical for or the ipairs
function.)

http://www.lua.org/manual/5.1/manual.html#pdf-load
http://www.lua.org/manual/5.1/manual.html#pdf-load
http://www.lua.org/manual/5.1/manual.html#pdf-ipairs

The behavior of next is undefined if, during the traversal, you assign any value
to a non-existent field in the table. You may however modify existing fields. In
particular, you may clear existing fields.

1.1.13 pairs (t)

Returns three values: the next function, the table t, and nil, so that the construc-
tion

for k,v in pairs(t) do body end

will iterate over all keytivalue pairs of table t.
See function next for the caveats of modifying the table during its traversal.

1.1.14 pcall (f, argl,)

Calls function f with the given arguments in protected mode. This means that
any error inside f is not propagated; instead, pcall catches the error and returns
a status code. Its first result is the status code (a boolean), which is true if the
call succeeds without errors. In such case, pcall also returns all results from the
call, after this first result. In case of any error, pcall returns false plus the error
message.

1.1.15 print O

Receives any number of arguments, and prints their values to stdout, using the
tostring function to convert them to strings. print is not intended for formatted

http://www.lua.org/manual/5.1/manual.html#pdf-next
http://www.lua.org/manual/5.1/manual.html#pdf-next
http://www.lua.org/manual/5.1/manual.html#pdf-tostring

output, but only as a quick way to show a value, typically for debugging. For
formatted output, use string.format.

1.1.16 rawequal (v1, v2)

Checks whether v1 is equal to v2, without invoking any metamethod. Returns a
boolean.

1.1.17 rawget (table, index)

Gets the real value of table[index], without invoking any metamethod. table
must be a table; index may be any value.

1.1.18 rawset (table, index, value)

Sets the real value of table[index] to value, without invoking any metamethod.
table must be a table, index any value different from nil, and value any Lua value.
This function returns table.

1.1.19 select (index,)

If index is a number, returns all arguments after argument number index. Other-
wise, index must be the string "#", and select returns the total number of extra
arguments it received.

1.1.20 setfenv (f, table)

Sets the environment to be used by the given function. f can be a Lua function or a
number that specifies the function at that stack level: Level 1 is the function calling
setfenv. setfenv returns the given function.

As a special case, when f is 0 setfenv changes the environment of the running
thread. In this case, setfenv returns no values.

1.1.21 setmetatable (table, metatable)

Sets the metatable for the given table. (You cannot change the metatable of other
types from Lua, only from C.) If metatable is nil, removes the metatable of the
given table. If the original metatable has a "__metatable" field, raises an error.

http://www.lua.org/manual/5.1/manual.html#pdf-string.format

This function returns table.

1.1.22 tonumber (e [, base])

Tries to convert its argument to a number. If the argument is already a number or
a string convertible to a number, then tonumber returns this number; otherwise, it
returns nil.

An optional argument specifies the base to interpret the numeral. The base may
be any integer between 2 and 36, inclusive. In bases above 10, the letter A’ (in
either upper or lower case) represents 10, B’ represents 11, and so forth, with 'Z’
representing 35. In base 10 (the default), the number can have a decimal part, as
well as an optional exponent part (see §2.1). In other bases, only unsigned integers
are accepted.

1.1.23 tostring (e)

Receives an argument of any type and converts it to a string in a reasonable format.
For complete control of how numbers are converted, use string.format.
If the metatable of e has a "__tostring" field, then tostring calls the correspond-
ing value with e as argument, and uses the result of the call as its result.

1.1.24 type (v)

Returns the type of its only argument, coded as a string. The possible results of

this function are 'nil" (a string, not the value nil), "'number", "string', "boolean’,
"table", "function', "thread', and "userdata".

1.1.25 wunpack (list [, i [, jl1)
Returns the elements from the given table. This function is equivalent to

return list[i], list[i+1], , list[j]

http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#pdf-string.format

except that the above code can be written only for a fixed number of elements. By
default, i is 1 and j is the length of the list, as defined by the length operator (see
§2.5.5).

1.1.26 _VERSION

A global variable (not a function) that holds a string containing the current inter-
preter version. The current contents of this variable is "Lua 5.1".

1.1.27 xpcall (f, err)

This function is similar to pcall, except that you can set a new error handler.
xpcall calls function f in protected mode, using err as the error handler. Any
error inside f is not propagated; instead, xpcall catches the error, calls the err
function with the original error object, and returns a status code. Its first result is
the status code (a boolean), which is true if the call succeeds without errors. In this
case, xpcall also returns all results from the call, after this first result. In case of
any error, xpcall returns false plus the result from err.

1.2 5.2 - Coroutine Manipulation

The operations related to coroutines comprise a sub-library of the basic library and
come inside the table coroutine . See §2.11 for a general description of coroutines.

1.2.1 coroutine.create (f)

Creates a new coroutine, with body f. £ must be a Lua function. Returns this new
coroutine, an object with type "thread".

1.2.2 coroutine.resume (co [, vall, 1)

Starts or continues the execution of coroutine co. The first time you resume a
coroutine, it starts running its body. The values vall, are passed as the arguments
to the body function. If the coroutine has yielded, resume restarts it; the values
vall, are passed as the results from the yield.

If the coroutine runs without any errors, resume returns true plus any values passed
to yield (if the coroutine yields) or any values returned by the body function (if

http://www.lua.org/manual/5.1/manual.html#2.5.5
http://www.lua.org/manual/5.1/manual.html#pdf-pcall
http://www.lua.org/manual/5.1/manual.html#2.11

the coroutine terminates). If there is any error, resume returns false plus the error
message.

1.2.3 coroutine.running ()

Returns the running coroutine, or nil when called by the main thread.

1.2.4 coroutine.status (co)

Returns the status of coroutine co, as a string: "running", if the coroutine is running
(that is, it called status); "suspended", if the coroutine is suspended in a call to
yield, or if it has not started running yet; "normal" if the coroutine is active but
not running (that is, it has resumed another coroutine); and "dead" if the coroutine
has finished its body function, or if it has stopped with an error.

1.2.5 coroutine.wrap (f)

Creates a new coroutine, with body f. f must be a Lua function. Returns a
function that resumes the coroutine each time it is called. Any arguments passed
to the function behave as the extra arguments to resume. Returns the same values
returned by resume, except the first boolean. In case of error, propagates the error.

1.2.6 coroutine.yield ()

Suspends the execution of the calling coroutine. The coroutine cannot be running
a C function, a metamethod, or an iterator. Any arguments to yield are passed as
extra results to resume.

1.3 5.3 - Modules

The package library provides basic facilities for loading and building modules in
Lua. It exports two of its functions directly in the global environment: require
and module. Everything else is exported in a table package .

1.3.1 module (name [,])

Creates a module. If there is a table in package.loaded[name], this table is the
module. Otherwise, if there is a global table t with the given name, this table is the

http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-module

10

module. Otherwise creates a new table t and sets it as the value of the global name
and the value of package.loaded[name]. This function also initializes t._NAME
with the given name, t._M with the module (t itself), and t._PACKAGE with the
package name (the full module name minus last component; see below). Finally,
module sets t as the new environment of the current function and the new value of
package.loaded [name], so that require returns t.

If name is a compound name (that is, one with components separated by dots),
module creates (or reuses, if they already exist) tables for each component. For
instance, if name is a.b.c, then module stores the module table in field c of field b
of global a.

This function can receive optional options after the module name, where each option
is a function to be applied over the module.

1.3.2 require (modname)

Loads the given module. The function starts by looking into the package.loaded

table to determine whether modname is already loaded. If it is, then require returns

the value stored at package.loaded[modname]. Otherwise, it tries to find a loader

for the module.

To find a loader, require is guided by the package.loaders array. By changing this

array, we can change how require looks for a module. The following explanation

is based on the default configuration for package.loaders.

First require queries package.preload[modname]. If it has a value, this value
(which should be a function) is the loader. Otherwise require searches for a Lua
loader using the path stored in package.path. If that also fails, it searches for

a C loader using the path stored in package.cpath. If that also fails, it tries an
all-in-one loader (see package.loaders).

Once a loader is found, require calls the loader with a single argument, modname. If

the loader returns any value, require assigns the returned value to package . loaded [modname].
If the loader returns no value and has not assigned any value to package .loaded [modname],
then require assigns true to this entry. In any case, require returns the final value

of package.loaded[modname].

If there is any error loading or running the module, or if it cannot find any loader

for the module, then require signals an error.

1.3.3 package.cpath

The path used by require to search for a C loader.

http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-package.loaded
http://www.lua.org/manual/5.1/manual.html#pdf-package.loaders
http://www.lua.org/manual/5.1/manual.html#pdf-package.loaders
http://www.lua.org/manual/5.1/manual.html#pdf-package.path
http://www.lua.org/manual/5.1/manual.html#pdf-package.cpath
http://www.lua.org/manual/5.1/manual.html#pdf-package.loaders
http://www.lua.org/manual/5.1/manual.html#pdf-require

11

Lua initializes the C path package.cpath in the same way it initializes the Lua
path package.path, using the environment variable LUA_CPATH or a default path
defined in luaconf.h.

1.3.4 package.loaded

A table used by require to control which modules are already loaded. When you
require a module modname and package.loaded[modname] is not false, require
simply returns the value stored there.

1.3.5 package.loaders

A table used by require to control how to load modules.

Each entry in this table is a searcher function. When looking for a module, require
calls each of these searchers in ascending order, with the module name (the argument
given to require) as its sole parameter. The function can return another function
(the module loader) or a string explaining why it did not find that module (or nil
if it has nothing to say). Lua initializes this table with four functions.

The first searcher simply looks for a loader in the package.preload table.

The second searcher looks for a loader as a Lua library, using the path stored at
package.path. A path is a sequence of templates separated by semicolons. For
each template, the searcher will change each interrogation mark in the template
by filename, which is the module name with each dot replaced by a "directory
separator’ (such as "/" in Unix); then it will try to open the resulting file name. So,
for instance, if the Lua path is the string

"./?.1ua;./?.1c;/usr/local/?/init.lua"

the search for a Lua file for module foo will try to open the files ./foo.1lua,
./foo.1lc, and /usr/local/foo/init.1lua, in that order.

The third searcher looks for a loader as a C library, using the path given by the
variable package.cpath. For instance, if the C path is the string

"./?.80;./7.d11;/usr/local/?/init.so"

the searcher for module foo will try to open the files ./foo.so, ./foo.d1ll, and
/usr/local/foo/init.so, in that order. Once it finds a C library, this searcher
first uses a dynamic link facility to link the application with the library. Then it tries
to find a C function inside the library to be used as the loader. The name of this
C function is the string "luaopen_" concatenated with a copy of the module name
where each dot is replaced by an underscore. Moreover, if the module name has a

http://www.lua.org/manual/5.1/manual.html#pdf-package.cpath
http://www.lua.org/manual/5.1/manual.html#pdf-package.path
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-package.preload
http://www.lua.org/manual/5.1/manual.html#pdf-package.path
http://www.lua.org/manual/5.1/manual.html#pdf-package.cpath

12

hyphen, its prefix up to (and including) the first hyphen is removed. For instance,
if the module name is a.v1-b.c, the function name will be luaopen_b_c.

The fourth searcher tries an all-in-one loader. It searches the C path for a library
for the root name of the given module. For instance, when requiring a.b.c, it
will search for a C library for a. If found, it looks into it for an open function for
the submodule; in our example, that would be luaopen_a_b_c. With this facility, a
package can pack several C submodules into one single library, with each submodule
keeping its original open function.

1.3.6 package.loadlib (libname, funcname)

Dynamically links the host program with the C library libname. Inside this li-
brary, looks for a function funcname and returns this function as a C function. (So,
funcname must follow the protocol (see lua_CFunction)).

This is a low-level function. It completely bypasses the package and module system.
Unlike require, it does not perform any path searching and does not automatically
adds extensions. libname must be the complete file name of the C library, including
if necessary a path and extension. funcname must be the exact name exported by
the C library (which may depend on the C compiler and linker used).

This function is not supported by ANSI C. As such, it is only available on some
platforms (Windows, Linux, Mac OS X, Solaris, BSD, plus other Unix systems that
support the d1fcn standard).

1.3.7 package.path

The path used by require to search for a Lua loader.
At start-up, Lua initializes this variable with the value of the environment variable
LUA_PATH or with a default path defined in luaconf .h, if the environment variable

http://www.lua.org/manual/5.1/manual.html#lua_CFunction
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require

13

is not defined. Any "; ;" in the value of the environment variable is replaced by the
default path.

1.3.8 package.preload

A table to store loaders for specific modules (see require).

1.3.9 package.seeall (module)

Sets a metatable for module with its __index field referring to the global environ-
ment, so that this module inherits values from the global environment. To be used
as an option to function module.

1.4 5.4 - String Manipulation

This library provides generic functions for string manipulation, such as finding and
extracting substrings, and pattern matching. When indexing a string in Lua, the
first character is at position 1 (not at 0, as in C). Indices are allowed to be negative
and are interpreted as indexing backwards, from the end of the string. Thus, the
last character is at position -1, and so on.

The string library provides all its functions inside the table string . It also
sets a metatable for strings where the __index field points to the string table.
Therefore, you can use the string functions in object-oriented style. For instance,
string.byte(s, i) can be written as s:byte(i).

The string library assumes one-byte character encodings.

1.4.1 string.byte (s [, 1 [, j11)

Returns the internal numerical codes of the characters s[i], s[i+1], , s[j]. The
default value for i is 1; the default value for j is i.
Note that numerical codes are not necessarily portable across platforms.

1.4.2 string.char ()

Receives zero or more integers. Returns a string with length equal to the number
of arguments, in which each character has the internal numerical code equal to its
corresponding argument.

http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-module

14

Note that numerical codes are not necessarily portable across platforms.

1.4.3 string.dump (function)

Returns a string containing a binary representation of the given function, so that a
later loadstring on this string returns a copy of the function. function must be
a Lua function without upvalues.

1.4.4 string.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find
returns the indices of s where this occurrence starts and ends; otherwise, it returns
nil. A third, optional numerical argument init specifies where to start the search;
its default value is 1 and can be negative. A value of true as a fourth, optional
argument plain turns off the pattern matching facilities, so the function does a
plain "find substring" operation, with no characters in pattern being considered
"magic". Note that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also
returned, after the two indices.

1.4.5 string.format (formatstring,)

Returns a formatted version of its variable number of arguments following the de-
scription given in its first argument (which must be a string). The format string
follows the same rules as the printf family of standard C functions. The only dif-
ferences are that the options/modifiers *, 1, L, n, p, and h are not supported and
that there is an extra option, q. The q option formats a string in a form suitable
to be safely read back by the Lua interpreter: the string is written between double
quotes, and all double quotes, newlines, embedded zeros, and backslashes in the
string are correctly escaped when written. For instance, the call

string.format('%q', 'a string with "quotes" and \n new line')
will produce the string:

"a string with \"quotes\" and \
new line"

The options ¢, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument,
whereas q and s expect a string.

http://www.lua.org/manual/5.1/manual.html#pdf-loadstring

15

This function does not accept string values containing embedded zeros, except as
arguments to the q option.

1.4.6 string.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures
from pattern over string s. If pattern specifies no captures, then the whole match
is produced in each call.

As an example, the following loop

s = "hello world from Lua"
for w in string.gmatch(s, "%a+") do
print (w)
end

will iterate over all the words from string s, printing one per line. The next example
collects all pairs key=value from the given string into a table:

t = {}
s = "from=world, to=Lua"
for k, v in string.gmatch(s, " (%w+)=C4w+)") do
tlk] = v
end

For this function, a =’ at the start of a pattern does not work as an anchor, as this
would prevent the iteration.

1.4.7 string.gsub (s, pattern, repl [, n])

Returns a copy of s in which all (or the first n, if given) occurrences of the pattern
have been replaced by a replacement string specified by repl, which can be a string,
a table, or a function. gsub also returns, as its second value, the total number of
matches that occurred.

If repl is a string, then its value is used for replacement. The character % works as
an escape character: any sequence in repl of the form %n, with n between 1 and 9,
stands for the value of the n-th captured substring (see below). The sequence %0
stands for the whole match. The sequence %7 stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture
as the key; if the pattern specifies no captures, then the whole match is used as the
key.

16

If repl is a function, then this function is called every time a match occurs, with
all captured substrings passed as arguments, in order; if the pattern specifies no
captures, then the whole match is passed as a sole argument.

If the value returned by the table query or by the function call is a string or a
number, then it is used as the replacement string; otherwise, if it is false or nil,
then there is no replacement (that is, the original match is kept in the string).
Here are some examples:

x = string.gsub("hello world", "(%w+)", "%1 %1")
--> x="hello hello world world"

x = string.gsub("hello world", "%w+", "%0 %0", 1)
--> x="hello hello world"

x = string.gsub("hello world from Lua", " (%w+)%s*x(%w+t)", "%2 %1")
--> x="world hello Lua from"

X = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
-—> x="home = /home/roberto, user = roberto"

X = string.gsub("4+5 = $return 4+5$%", "%$(.-)%3$", function (s)
return loadstring(s) ()
end)
-=> x="4+5 = 9"

local t = {name="lua", version="5.1"}
x = string.gsub("$name-$version.tar.gz", "%$w+)", t)
-=-> x="lua-5.1.tar.gz"
1.4.8 string.len (s)
Receives a string and returns its length. The empty string "" has length 0. Embed-
ded zeros are counted, so "a\000bc\000" has length 5.
1.49 string.lower (s)

Receives a string and returns a copy of this string with all uppercase letters changed
to lowercase. All other characters are left unchanged. The definition of what an

17

uppercase letter is depends on the current locale.

1.4.10 string.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds one, then match
returns the captures from the pattern; otherwise it returns nil. If pattern specifies
no captures, then the whole match is returned. A third, optional numerical argument
init specifies where to start the search; its default value is 1 and can be negative.

1.4.11 string.rep (s, n)

Returns a string that is the concatenation of n copies of the string s.

1.4.12 string.reverse (s)

Returns a string that is the string s reversed.

1.4.13 string.sub (s, i [, j1)

Returns the substring of s that starts at i and continues until j; i and j can be
negative. If j is absent, then it is assumed to be equal to -1 (which is the same as
the string length). In particular, the call string.sub(s,1,j) returns a prefix of s
with length j, and string.sub(s, -i) returns a suffix of s with length i.

1.4.14 string.upper (s)

Receives a string and returns a copy of this string with all lowercase letters changed
to uppercase. All other characters are left unchanged. The definition of what a
lowercase letter is depends on the current locale.

1.4.15 5.4.1 - Patterns

1.4.15.1 Character Class:

A character class is used to represent a set of characters. The following combinations
are allowed in describing a character class:

18

x: (where x is not one of the magic characters ~$()%. [1*+-7) represents the
character x itself.

: (a dot) represents all characters.
%ha: represents all letters.
%c: represents all control characters.
%d: represents all digits.
%1: represents all lowercase letters.
%p: represents all punctuation characters.
%s: represents all space characters.
%u: represents all uppercase letters.
%w: represents all alphanumeric characters.
Jx: represents all hexadecimal digits.
%z: represents the character with representation 0.

%x: (where x is any non-alphanumeric character) represents the character x. This
is the standard way to escape the magic characters. Any punctuation character
(even the non magic) can be preceded by a '}’ when used to represent itself in a
pattern.

[set]: represents the class which is the union of all characters in set. A range
of characters can be specified by separating the end characters of the range with
a =’ All classes %x described above can also be used as components in set. All
other characters in set represent themselves. For example, [%w_] (or [_%w])
represents all alphanumeric characters plus the underscore, [0-7] represents the
octal digits, and [0-7%1%-] represents the octal digits plus the lowercase letters
plus the '-’ character.

The interaction between ranges and classes is not defined. Therefore, patterns
like [%a-z] or [a-%%] have no meaning.

[“set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding upper-
case letter represents the complement of the class. For instance, %S represents all
non-space characters.

19

The definitions of letter, space, and other character groups depend on the current
locale. In particular, the class [a-z] may not be equivalent to %1.

1.4.15.2 Pattern Item:

A pattern item can be

a single character class, which matches any single character in the class;

a single character class followed by ’*’, which matches 0 or more repetitions of
characters in the class. These repetition items will always match the longest
possible sequence;

a single character class followed by ’+’, which matches 1 or more repetitions of
characters in the class. These repetition items will always match the longest
possible sequence;

a single character class followed by '-’, which also matches 0 or more repetitions
of characters in the class. Unlike *’) these repetition items will always match
the shortest possible sequence;

)

a single character class followed by ’'?’, which matches 0 or 1 occurrence of a

character in the class;

Jn, for n between 1 and 9; such item matches a substring equal to the n-th
captured string (see below);

%bxy, where x and y are two distinct characters; such item matches strings that
start with x, end with y, and where the x and y are balanced. This means that,
if one reads the string from left to right, counting +1 for an x and -1 for a y, the
ending y is the first y where the count reaches 0. For instance, the item %b ()
matches expressions with balanced parentheses.

1.4.15.3 Pattern:

A pattern is a sequence of pattern items. A '~7 at the beginning of a pattern anchors
the match at the beginning of the subject string. A ’$’ at the end of a pattern anchors

20

Y

the match at the end of the subject string. At other positions, "=’ and '$’ have no

special meaning and represent themselves.

1.4.15.4 Captures:

A pattern can contain sub-patterns enclosed in parentheses; they describe captures.
When a match succeeds, the substrings of the subject string that match captures
are stored (captured) for future use. Captures are numbered according to their
left parentheses. For instance, in the pattern " (ax(.)%w(%s*))", the part of the
string matching "a*(.)%w(%s*)" is stored as the first capture (and therefore has
number 1); the character matching "." is captured with number 2, and the part
matching "%s*" has number 3.

As a special case, the empty capture () captures the current string position (a
number). For instance, if we apply the pattern "()aa()" on the string "flaaap",
there will be two captures: 3 and 5.

A pattern cannot contain embedded zeros. Use %z instead.

1.5 5.5 - Table Manipulation

This library provides generic functions for table manipulation. It provides all its
functions inside the table table .

Most functions in the table library assume that the table represents an array or a
list. For these functions, when we talk about the "length" of a table we mean the
result of the length operator.

1.5.1 table.concat (table [, sep [, i [, j111)

Given an array where all elements are strings or numbers, returns table[i] . .sep..table[i+1]
sep..table[j]. The default value for sep is the empty string, the default for i is

1, and the default for j is the length of the table. If i is greater than j, returns the

empty string.

1.5.2 table.insert (table, [pos,] value)

Inserts element value at position pos in table, shifting up other elements to open
space, if necessary. The default value for pos is n+1, where n is the length of the

21

table (see §2.5.5), so that a call table.insert(t,x) inserts x at the end of table
t.

1.5.3 table.maxn (table)

Returns the largest positive numerical index of the given table, or zero if the table
has no positive numerical indices. (To do its job this function does a linear traversal
of the whole table.)

1.5.4 table.remove (table [, pos])

Removes from table the element at position pos, shifting down other elements to
close the space, if necessary. Returns the value of the removed element. The default
value for pos is n, where n is the length of the table, so that a call table.remove (t)
removes the last element of table t.

1.5.5 table.sort (table [, comp])

Sorts table elements in a given order, in-place, from table[1] to table[n], where
n is the length of the table. If comp is given, then it must be a function that receives
two table elements, and returns true when the first is less than the second (so that
not comp(ali+1],a[i]) will be true after the sort). If comp is not given, then the
standard Lua operator < is used instead.

http://www.lua.org/manual/5.1/manual.html#2.5.5

22

The sort algorithm is not stable; that is, elements considered equal by the given
order may have their relative positions changed by the sort.

1.6 5.6 - Mathematical Functions

This library is an interface to the standard C math library. It provides all its
functions inside the table math .

1.6.1 math.abs (x)

Returns the absolute value of x.

1.6.2 math.acos (x)

Returns the arc cosine of x (in radians).

1.6.3 math.asin (x)

Returns the arc sine of x (in radians).

1.6.4 math.atan (x)

Returns the arc tangent of x (in radians).

1.6.5 math.atan2 (y, x)

Returns the arc tangent of y/x (in radians), but uses the signs of both parameters
to find the quadrant of the result. (It also handles correctly the case of x being

23

Z€ro.)

1.6.6 math.ceil (x)

Returns the smallest integer larger than or equal to x.

1.6.7 math.cos (x)

Returns the cosine of x (assumed to be in radians).

1.6.8 math.cosh (x)

Returns the hyperbolic cosine of x.

1.6.9 math.deg (x)

Returns the angle x (given in radians) in degrees.

1.6.10 math.exp (x)

Returns the value €.

1.6.11 math.floor (x)

Returns the largest integer smaller than or equal to x.

1.6.12 math.fmod (x, y)

Returns the remainder of the division of x by y that rounds the quotient towards
Zero.

1.6.13 math.frexp (x)

Returns m and e such that x = m2¢, e is an integer and the absolute value of m is in

24

the range [0.5, 1) (or zero when x is zero).

1.6.14 math.huge

The value HUGE_VAL, a value larger than or equal to any other numerical value.

1.6.15 math.ldexp (m, e)

Returns m2¢ (e should be an integer).

1.6.16 math.log (x)

Returns the natural logarithm of x.

1.6.17 math.logl0 (x)

Returns the base-10 logarithm of x.

1.6.18 math.max (x,)

Returns the maximum value among its arguments.

1.6.19 math.min (x,)

Returns the minimum value among its arguments.

1.6.20 math.modf (x)

Returns two numbers, the integral part of x and the fractional part of x.

1.6.21 math.pi

The value of pi.

1.6.22 math.pow (x, y)

Returns xY. (You can also use the expression x~y to compute this value.)

25

1.6.23 math.rad (x)

Returns the angle x (given in degrees) in radians.

1.6.24 math.random ([m [, nl])

This function is an interface to the simple pseudo-random generator function rand
provided by ANSI C. (No guarantees can be given for its statistical properties.)
When called without arguments, returns a uniform pseudo-random real number in
the range [0,1). When called with an integer number m, math.random returns a
uniform pseudo-random integer in the range [I, m]. When called with two integer
numbers m and n, math.random returns a uniform pseudo-random integer in the
range [m, nJ.

1.6.25 math.randomseed (x)

Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal
sequences of numbers.

1.6.26 math.sin (x)

Returns the sine of x (assumed to be in radians).

1.6.27 math.sinh (x)

Returns the hyperbolic sine of x.

1.6.28 math.sqrt (x)

Returns the square root of x. (You can also use the expression x~0.5 to compute

26

this value.)

1.6.29 math.tan (x)

Returns the tangent of x (assumed to be in radians).

1.6.30 math.tanh (x)

Returns the hyperbolic tangent of x.

1.7 5.7 - Input and Output Facilities

The I/O library provides two different styles for file manipulation. The first one uses
implicit file descriptors; that is, there are operations to set a default input file and a
default output file, and all input/output operations are over these default files. The
second style uses explicit file descriptors.

When using implicit file descriptors, all operations are supplied by table io . When
using explicit file descriptors, the operation io.open returns a file descriptor and
then all operations are supplied as methods of the file descriptor.

The table io also provides three predefined file descriptors with their usual meanings
from C: io.stdin, io.stdout , and io.stderr . The I/O library never closes
these files.

Unless otherwise stated, all I/O functions return nil on failure (plus an error message
as a second result and a system-dependent error code as a third result) and some
value different from nil on success.

1.7.1 io.close ([file]l)

Equivalent to file:close(). Without a file, closes the default output file.

1.7.2 io.flush ()

Equivalent to file:flush over the default output file.

1.7.3 io.input ([file])

When called with a file name, it opens the named file (in text mode), and sets its
handle as the default input file. When called with a file handle, it simply sets this

http://www.lua.org/manual/5.1/manual.html#pdf-io.open

27

file handle as the default input file. When called without parameters, it returns the
current default input file.
In case of errors this function raises the error, instead of returning an error code.

1.74 io.lines ([filename])

Opens the given file name in read mode and returns an iterator function that, each
time it is called, returns a new line from the file. Therefore, the construction

for line in io.lines(filename) do body end

will iterate over all lines of the file. When the iterator function detects the end of
file, it returns nil (to finish the loop) and automatically closes the file.

The call io.1lines () (with no file name) is equivalent to io.input () :1ines(); that
is, it iterates over the lines of the default input file. In this case it does not close
the file when the loop ends.

1.7.5 io.open (filename [, mode])

This function opens a file, in the mode specified in the string mode. It returns a new
file handle, or, in case of errors, nil plus an error message.
The mode string can be any of the following:

e "r": read mode (the default);

e "w": write mode;

e "a": append mode;

e "r+4": update mode, all previous data is preserved;

e "w+": update mode, all previous data is erased;

e "a-+": append update mode, previous data is preserved, writing is only allowed
at the end of file.

28

The mode string can also have a b’ at the end, which is needed in some systems to
open the file in binary mode. This string is exactly what is used in the standard C
function fopen.

1.7.6 io.output ([file])

Similar to io.input, but operates over the default output file.

1.7.7 io.popen (prog [, model)

Starts program prog in a separated process and returns a file handle that you can
use to read data from this program (if mode is "r", the default) or to write data to
this program (if mode is "w").

This function is system dependent and is not available on all platforms.

1.7.8 io.read ()

Equivalent to io.input () :read.

1.7.9 io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is
automatically removed when the program ends.

1.7.10 io.type (obj)

Checks whether obj is a valid file handle. Returns the string "file" if obj is an
open file handle, "closed file" if obj is a closed file handle, or nil if obj is not a

http://www.lua.org/manual/5.1/manual.html#pdf-io.input

29

file handle.

1.7.11 io.write ()

Equivalent to io.output () :write.

1.7.12 file:close ()

Closes file. Note that files are automatically closed when their handles are garbage
collected, but that takes an unpredictable amount of time to happen.

1.7.13 file:flush ()

Saves any written data to file.

1.7.14 file:lines ()

Returns an iterator function that, each time it is called, returns a new line from the
file. Therefore, the construction

for line in file:lines() do body end

will iterate over all lines of the file. (Unlike io.lines, this function does not close
the file when the loop ends.)

1.7.15 file:read ()

Reads the file file, according to the given formats, which specify what to read. For
each format, the function returns a string (or a number) with the characters read, or
nil if it cannot read data with the specified format. When called without formats,
it uses a default format that reads the entire next line (see below).

The available formats are

e "*n": reads a number; this is the only format that returns a number instead of
a string.

e "*a": reads the whole file, starting at the current position. On end of file, it
returns the empty string.

http://www.lua.org/manual/5.1/manual.html#pdf-io.lines

30

e "*1": reads the next line (skipping the end of line), returning nil on end of file.
This is the default format.

e number: reads a string with up to this number of characters, returning nil on
end of file. If number is zero, it reads nothing and returns an empty string, or
nil on end of file.

1.7.16 file:seek ([whence] [, offset])

Sets and gets the file position, measured from the beginning of the file, to the position
given by offset plus a base specified by the string whence, as follows:

e "set": base is position 0 (beginning of the file);

e "cur": base is current position;
e "end": base is end of file;

In case of success, function seek returns the final file position, measured in bytes

from the beginning of the file. If this function fails, it returns nil, plus a string
describing the error.

The default value for whence is "cur", and for offset is 0. Therefore, the call
file:seek() returns the current file position, without changing it; the call file:seek("set")
sets the position to the beginning of the file (and returns 0); and the call file:seek("end")
sets the position to the end of the file, and returns its size.

1.7.17 file:setvbuf (mode [, size])
Sets the buffering mode for an output file. There are three available modes:

e "no": no buffering; the result of any output operation appears immediately.

o "full": full buffering; output operation is performed only when the buffer is full
(or when you explicitly flush the file (see io.flush)).

e "line": line buffering; output is buffered until a newline is output or there is any
input from some special files (such as a terminal device).

http://www.lua.org/manual/5.1/manual.html#pdf-io.flush

31

For the last two cases, size specifies the size of the buffer, in bytes. The default is
an appropriate size.

1.7.18 file:write ()

Writes the value of each of its arguments to the file. The arguments must be
strings or numbers. To write other values, use tostring or string.format before
write.

1.8 5.8 - Operating System Facilities

This library is implemented through table os .

1.8.1 os.clock ()

Returns an approximation of the amount in seconds of CPU time used by the pro-
gram.

1.8.2 os.date ([format [, time]l])

Returns a string or a table containing date and time, formatted according to the
given string format.

If the time argument is present, this is the time to be formatted (see the os.time
function for a description of this value). Otherwise, date formats the current time.
If format starts with 7!, then the date is formatted in Coordinated Universal Time.
After this optional character, if format is the string "+t", then date returns a table
with the following fields: year (four digits), month (1-12), day (1-31), hour (0-23),
min (0-59), sec (0-61), wday (weekday, Sunday is 1), yday (day of the year), and
isdst (daylight saving flag, a boolean).

If format is not "*t" then date returns the date as a string, formatted according
to the same rules as the C function strftime.

http://www.lua.org/manual/5.1/manual.html#pdf-tostring
http://www.lua.org/manual/5.1/manual.html#pdf-string.format
http://www.lua.org/manual/5.1/manual.html#pdf-os.time

32

When called without arguments, date returns a reasonable date and time represen-
tation that depends on the host system and on the current locale (that is, os.date ()
is equivalent to os.date("%c")).

1.8.3 os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and
some other systems, this value is exactly t2-t1.

1.8.4 os.execute ([command])

This function is equivalent to the C function system. It passes command to be
executed by an operating system shell. It returns a status code, which is system-de-
pendent. If command is absent, then it returns nonzero if a shell is available and zero
otherwise.

1.8.5 os.exit ([code])

Calls the C function exit, with an optional code, to terminate the host program.
The default value for code is the success code.

1.8.6 os.getenv (varname)

Returns the value of the process environment variable varname, or nil if the variable
is not defined.

1.8.7 os.remove (filename)

Deletes the file or directory with the given name. Directories must be empty to be
removed. If this function fails, it returns nil, plus a string describing the error.
1.8.8 os.rename (oldname, newname)

Renames file or directory named oldname to newname. If this function fails, it returns
nil, plus a string describing the error.

1.8.9 os.setlocale (locale [, categoryl])

Sets the current locale of the program. locale is a string specifying a locale;
category is an optional string describing which category to change: "all", "collate"

33

"ctype", "monetary", "numeric", or "time"; the default category is "all". The
function returns the name of the new locale, or nil if the request cannot be honored.
If 1ocale is the empty string, the current locale is set to an implementation-defined
native locale. If locale is the string "C", the current locale is set to the standard C
locale.

When called with nil as the first argument, this function only returns the name of
the current locale for the given category.

1.8.10 os.time ([table])

Returns the current time when called without arguments, or a time representing the
date and time specified by the given table. This table must have fields year, month,
and day, and may have fields hour, min, sec, and isdst (for a description of these
fields, see the os.date function).

The returned value is a number, whose meaning depends on your system. In POSIX,
Windows, and some other systems, this number counts the number of seconds since
some given start time (the "epoch'). In other systems, the meaning is not specified,
and the number returned by time can be used only as an argument to date and
difftime.

1.8.11 os.tmpname ()

Returns a string with a file name that can be used for a temporary file. The file must
be explicitly opened before its use and explicitly removed when no longer needed.
On some systems (POSIX), this function also creates a file with that name, to avoid
security risks. (Someone else might create the file with wrong permissions in the
time between getting the name and creating the file.) You still have to open the file
to use it and to remove it (even if you do not use it).

When possible, you may prefer to use io.tmpfile, which automatically removes
the file when the program ends.

1.9 5.9 - The Debug Library

This library provides the functionality of the debug interface to Lua programs. You
should exert care when using this library. The functions provided here should be
used exclusively for debugging and similar tasks, such as profiling. Please resist
the temptation to use them as a usual programming tool: they can be very slow.
Moreover, several of these functions violate some assumptions about Lua code (e.g.,
that variables local to a function cannot be accessed from outside or that userdata

http://www.lua.org/manual/5.1/manual.html#pdf-os.date
http://www.lua.org/manual/5.1/manual.html#pdf-io.tmpfile

34

metatables cannot be changed by Lua code) and therefore can compromise otherwise
secure code.

All functions in this library are provided inside the debug table. All functions that
operate over a thread have an optional first argument which is the thread to operate
over. The default is always the current thread.

1.9.1 debug.debug ()

Enters an interactive mode with the user, running each string that the user enters.
Using simple commands and other debug facilities, the user can inspect global and
local variables, change their values, evaluate expressions, and so on. A line con-
taining only the word cont finishes this function, so that the caller continues its
execution.

Note that commands for debug.debug are not lexically nested within any function,
and so have no direct access to local variables.

1.9.2 debug.getfenv (o)

Returns the environment of object o.

1.9.3 debug.gethook ([thread])

Returns the current hook settings of the thread, as three values: the current hook
function, the current hook mask, and the current hook count (as set by the debug
.sethook function).

1.9.4 debug.getinfo ([thread,] function [, what])

Returns a table with information about a function. You can give the function
directly, or you can give a number as the value of function, which means the
function running at level function of the call stack of the given thread: level 0 is
the current function (getinfo itself); level 1 is the function that called getinfo;
and so on. If function is a number larger than the number of active functions, then
getinfo returns nil.

The returned table can contain all the fields returned by lua_getinfo, with the
string what describing which fields to fill in. The default for what is to get all
information available, except the table of valid lines. If present, the option 'f’ adds
a field named func with the function itself. If present, the option 'L’ adds a field
named activelines with the table of valid lines.

http://www.lua.org/manual/5.1/manual.html#pdf-debug.sethook
http://www.lua.org/manual/5.1/manual.html#pdf-debug.sethook
http://www.lua.org/manual/5.1/manual.html#lua_getinfo

35

For instance, the expression debug.getinfo(1l,"n") .name returns a table with a
name for the current function, if a reasonable name can be found, and the expression
debug.getinfo(print) returns a table with all available information about the
print function.

1.9.5 debug.getlocal ([thread,] level, local)

This function returns the name and the value of the local variable with index local
of the function at level level of the stack. (The first parameter or local variable
has index 1, and so on, until the last active local variable.) The function returns
nil if there is no local variable with the given index, and raises an error when called
with a level out of range. (You can call debug.getinfo to check whether the level
is valid.)

Variable names starting with ’(’ (open parentheses) represent internal variables (loop
control variables, temporaries, and C function locals).

1.9.6 debug.getmetatable (object)

Returns the metatable of the given object or nil if it does not have a metatable.

1.9.7 debug.getregistry ()

Returns the registry table (see §3.5).

1.9.8 debug.getupvalue (func, up)

This function returns the name and the value of the upvalue with index up of the
function func. The function returns nil if there is no upvalue with the given index.
1.9.9 debug.setfenv (object, table)

Sets the environment of the given object to the given table. Returns object.

1.9.10 debug.sethook ([thread,] hook, mask [, count])

Sets the given function as a hook. The string mask and the number count describe
when the hook will be called. The string mask may have the following characters,
with the given meaning:

http://www.lua.org/manual/5.1/manual.html#pdf-print
http://www.lua.org/manual/5.1/manual.html#pdf-debug.getinfo
http://www.lua.org/manual/5.1/manual.html#3.5

36

e "c": the hook is called every time Lua calls a function;
e '"r": the hook is called every time Lua returns from a function;
e "1": the hook is called every time Lua enters a new line of code.

With a count different from zero, the hook is called after every count instructions.
When called without arguments, debug.sethook turns off the hook.

When the hook is called, its first parameter is a string describing the event that has
triggered its call: "call", "return" (or "tail return", when simulating a return
from a tail call), "1line", and "count". For line events, the hook also gets the new
line number as its second parameter. Inside a hook, you can call getinfo with
level 2 to get more information about the running function (level 0 is the getinfo
function, and level 1 is the hook function), unless the event is "tail return". In
this case, Lua is only simulating the return, and a call to getinfo will return invalid
data.

1.9.11 debug.setlocal ([thread,] level, local, value)

This function assigns the value value to the local variable with index local of the
function at level level of the stack. The function returns nil if there is no local
variable with the given index, and raises an error when called with a level out of
range. (You can call getinfo to check whether the level is valid.) Otherwise, it
returns the name of the local variable.

1.9.12 debug.setmetatable (object, table)

Sets the metatable for the given object to the given table (which can be nil).

1.9.13 debug.setupvalue (func, up, value)

This function assigns the value value to the upvalue with index up of the func-
tion func. The function returns nil if there is no upvalue with the given index.
Otherwise, it returns the name of the upvalue.

1.9.14 debug.traceback ([thread,] [message] [, levell)

Returns a string with a traceback of the call stack. An optional message string is
appended at the beginning of the traceback. An optional level number tells at
which level to start the traceback (default is 1, the function calling traceback).

http://www.lua.org/manual/5.1/manual.html#pdf-debug.sethook

