
Roberto Ierusalimschy 1

LPeg.re

Regex syntax for LPEG
Abstract
<+ Write Article Abstract +>

Keywords
<+ Write Article Keywords +>

Regex syntax for LPEG

re

1. Basic Constructions
2. Functions
3. Some Examples
4. License

The re Module
The re Module (provided by file re.lua in the distribution) supports a somewhat
conventional regex syntax for pattern usage within LPeg.

The next table summarizes re's syntax. A p represents an arbitrary
pattern; num represents a number ([0-9]+); name represents an identifier
([a-zA-Z][a-zA-Z0-9]*). Constructions are listed in order of decreasing prece-
dence.
Syntax Description

(p) grouping

'string' literal string

"string" literal string

[class] character class

. any character

%name pattern defs[name] or a pre-defined pattern

<name> non terminal

{} position capture

{ p } simple capture

{: p :} anonymous group capture

{:name: p :} named group capture

{~ p ~} substitution capture

=name back reference

p ? optional match

p * zero or more repetitions

p + one or more repetitions

p^num exactly n repetitions

#basic
#func
#ex
#license
lpeg.html

2 Roberto Ierusalimschy

p^+num at least n repetitions

p^-num at most n repetitions

p -> 'string' string capture

p -> "string" string capture

p -> {} table capture

p -> name function/query/string capture equivalent to p / defs[name]
p => name match-time capture equivalent to lpeg.Cmt(p, defs[name])
& p and predicate

! p not predicate

p1 p2 concatenation

p1 / p2 ordered choice

(name <- p)+ grammar

Any space appearing in a syntax description can be replaced by zero or more
space characters and Lua-style comments (-- until end of line).

Character classes define sets of characters. An initial ^ complements the resulting
set. A range x-y includes in the set all characters with codes between the codes of
x and y. A pre-defined class %name includes all characters of that class. A simple
character includes itself in the set. The only special characters inside a class are ^
(special only if it is the first character);] (can be included in the set as the first
character, after the optional ^); % (special only if followed by a letter); and - (can
be included in the set as the first or the last character).

Currently the pre-defined classes are similar to those from the Lua's string library
(%a for letters, %A for non letters, etc.). There is also a class %nl containing only
the newline character, which is particularly handy for grammars written inside long
strings, as long strings do not interpret escape sequences like \n.

Functions

re.compile (string, [, defs]). Compiles the given string and returns an
equivalent LPeg pattern. The given string may define either an expression or a
grammar. The optional defs table provides extra Lua values to be used by the
pattern.

re.find (subject, pattern [, init]). Searches the given pattern in the
given subject. If it finds a match, returns the index where this occurrence starts,
plus the captures made by the pattern (if any). Otherwise, returns nil.

re.match (subject, pattern). Matches the given pattern against the given
subject.

re.updatelocale (). Updates the pre-defined character classes to the current
locale.

Some Examples

Balanced parentheses. As a simple example, the following call will produce the
same pattern produced by the Lua expression in the balanced parentheses ex-
ample:

b = re.compile[[balanced <- "(" ([^()] / <balanced>)* ")"]]

String reversal. The next example reverses a string:

lpeg.html#balanced

LPeg.re 3

rev = re.compile[[R <- (!.) -> '' / ({.} <R>) -> '%2%1']]
print(rev:match"0123456789") --> 9876543210

CSV decoder. The next example replicates the CSV decoder:

record = re.compile[[
record <- (<field> (',' <field>)*) -> {} (%nl / !.)
field <- <escaped> / <nonescaped>
nonescaped <- { [^,"%nl]* }
escaped <- '"' {~ ([^"] / '""' -> '"')* ~} '"'

]]

Lua's long strings. The next example mathes Lua long strings:

c = re.compile([[
longstring <- ('[' {:eq: '='* :} '[' <close>) => void
close <- ']' =eq ']' / . <close>

]], {void = function () return true end})

print(c:match'[==[]]===]]]]==]===[]') --> 17

Indented blocks. This example breaks indented blocks into tables, respecting the
indentation:

p = re.compile[[
block <- ({:ident:' '*:} <line>

((=ident !' ' <line>) / &(=ident ' ') <block>)*) -> {}
line <- {[^%nl]*} %nl

]]

As an example, consider the following text:

t = p:match[[
first line
subline 1
subline 2

second line
third line
subline 3.1
subline 3.1.1

subline 3.2
]]

The resulting table t will be like this:

{'first line'; {'subline 1'; 'subline 2'; ident = ' '};
'second line';
'third line'; { 'subline 3.1'; {'subline 3.1.1'; ident = ' '};

'subline 3.2'; ident = ' '};
ident = ''}

Macro expander. This example implements a simple macro expander. Macros
must be defined as part of the pattern, following some simple rules:

lpeg.html#CSV

4 Roberto Ierusalimschy

p = re.compile[[
text <- {~ <item>* ~}
item <- <macro> / [^()] / '(' <item>* ')'
arg <- ' '* {~ (!',' <item>)* ~}
args <- '(' <arg> (',' <arg>)* ')'
-- now we define some macros
macro <- ('apply' <args>) -> '%1(%2)'

/ ('add' <args>) -> '%1 + %2'
/ ('mul' <args>) -> '%1 * %2'

]]

print(p:match"add(mul(a,b), apply(f,x))") --> a * b + f(x)

A text is a sequence of items, wherein we apply a substitution capture to expand
any macros. An item is either a macro, any character different from parentheses,
or a parenthesized expression. A macro argument (arg) is a sequence of items dif-
ferent from a comma. (Note that a comma may appear inside an item, e.g., inside
a parenthesized expression.) Again we do a substitution capture to expand any
macro in the argument before expanding the outer macro. args is a list of argu-
ments separated by commas. Finally we define the macros. Each macro is a string
substitution; it replaces the macro name and its arguments by its corresponding
string, with each %n replaced by the n-th argument.

License
Copyright ©2008 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

$Id: re.html,v 1.11 2008/10/10 18:14:06 roberto Exp $

http://www.inf.puc-rio.br/ roberto/lpeg/re.html

